Parameters of thermal performance of plaster blocks: Experimental analysis

Authors

DOI:

https://doi.org/10.3989/mc.2023.299322

Keywords:

Plaster block, Thermal chamber, NBR 15220, Infrared thermography

Abstract


This work aims to obtain parameters of thermal performance of various types of plaster blocks for vertical sealing. The methodology consisted of making test elements with 8 types of plaster blocks, in addition to plasterboard of different densities. Thermal resistance, transmittance, capacity, and delay were calculated, according to the Brazilian standard NBR 15220. Thermal behavior tests were carried out with controlled heating through a heat source, digital thermometer, infrared thermography, and an instrumented thermal chamber developed for this work. The experimental results corroborated with the trend indicated by the calculated parameters. The massive and hollow blocks of 100 mm had the best results followed by the 76 mm hollow blocks. The 50- and 70-mm massive blocks were among those with the worst thermal behavior. The study through the thermal chamber and real test elements associated with the normative methods allowed the practical verification regarding the thermal behavior of the components.

Downloads

Download data is not yet available.

References

European Union (2010). Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings (EPBD recast). Off. J. Eur. Union 2010, 53. Retrieved from https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:153:0013:0035:EN:PDF

Byrne, A.; Byrne, G.; Robinson, A. (2017) Compact facility for testing steady and transient thermal performance of building walls. Energy Build. 152, 602-614. https://doi.org/10.1016/j.enbuild.2017.07.086

Geraldi, M.S.; Ghisi, E. (2020) Building-level and Stock-level in contrast: a literature review of the energy performance of buildings during the operational stage. Energy Build. 211, 109810. https://doi.org/10.1016/j.enbuild.2020.109810

Marinakis, V. (2020) Big data for energy management and energy-efficient buildings. Energies. 13 [7], 1555. https://doi.org/10.3390/en13071555

Al-Naghi, A.A.A.; Rahman, M.K.; Al-Amoudi, O.S.B.; Al-Dulaijan, S.U. (2020) Thermal performance evaluation of walls with aac blocks, insulating plaster, and reflective coating. J. Energy Eng. 146, 04019040. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000636

Ascione, F.; Bianco, N.; de Masi, R.F.; Mauro, G.M.; Vanoli, G.P. (2015) Design of the Building Envelope: A novel multi-objective approach for the optimization of energy performance and thermal comfort. Sustainability. 7 [8], 10809. https://doi.org/10.3390/su70810809

Lamberts, R.; Duarte, V.C.P. (2016) Desempenho térmico de edificações, Universidade Federal de Santa Catarina, Florianopolis, Brazil.

Echarri, V.; Espinosa, A.; Rizo, C. (2017) Thermal transmission through existing building enclosures: destructive monitoring in intermediate layers versus non-destructive monitoring with sensors on surfaces. Sensors. 17 [12], 2848. https://doi.org/10.3390/s17122848 PMid:29292781 PMCid:PMC5751449

Economidou, M.; Todeschi, V.; Bertoldi, P.; Agostino, D.; Zangheri, P.; Castellazzi, L. (2020) Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 225, 110322. https://doi.org/10.1016/j.enbuild.2020.110322

Pereira, B.M.S. (2014) A eficiência energética em edifícios: análise comparativa da regulamentação aplicável na península Ibérica, Master's Thesis, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Brazil.

Najjar, M.; Figueiredo, K.; Hammad, A.W.A.; Haddad, A. (2019) Integrated optimization with building information modeling and life cycle assessment for generating energy efficient buildings. Appl. Energy. 250, 1366-1382. https://doi.org/10.1016/j.apenergy.2019.05.101

Aguilera, D.G.; Lagüelab, S.; Rodríguez-Gonzálveza, P.; Hernández-López, D. (2013) Image-based thermographic modeling for assessing energy efficiency of buildings façades. Energy Build. 65, 29-36. https://doi.org/10.1016/j.enbuild.2013.05.040

International Organization for Standardization - ISO (2017). ISO 52000-1:2017. Energy performance of buildings - Overarching EPB assessment - Part 1: General framework and procedures. Geneva, Switzerland.

International Organization for Standardization - ISO (2017). ISO 52003-1:2017. Energy performance of buildings - Indicators, requirements, ratings and certificates - Part 1: General aspects and application to the overall energy performance. Geneva, Switzerland.

International Organization for Standardization - ISO (2017). ISO 52010-1:2017 Energy performance of buildings - External climatic conditions - Part 1: Conversion of climatic data for energy calculations. Geneva, Switzerland.

International Organization for Standardization - ISO (2017). ISO 52016-1:2017. Energy performance of buildings - Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads - Part 1: Calculation procedures. Geneva, Switzerland.

International Organization for Standardization - ISO (2017). ISO 52018-1:2017. Energy performance of buildings - Indicators for partial EPB requirements related to thermal energy balance and fabric features - Part 1: Overview of options. Geneva, Switzerland.

Tubelo, R.C.S.; Rodrigues, L.T.; Gillot, M.A. (2014) Comparative study of the brazilian energy labelling system and the passivhaus standard for housing. Buildings. 4 [2], 207-221. https://doi.org/10.3390/buildings4020207

Bogo, A.J. (2016) Reflexões críticas quanto as limitações do texto das normas brasileiras de desempenho NBR 15220-3 e NBR 15575. Holos. 32, 290-298. https://doi.org/10.15628/holos.2016.4389

Associação Brasileira de Normas Técnicas (2005) NBR 15220: Desempenho térmico de edificações - Parte 1-5. ABNT, Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2013) NBR 15575: Edificações habitacionais - Desempenho - Parte 1 -5. ABNT, Rio de Janeiro.

Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (2012) Regulamento técnico da qualidade para o nível de eficiência energética edificações residenciais (RTQ-R), INMETRO, Rio de Janeiro, Brasil, 2012.

Marques, T.H.T.; Chavatala, K.M.S. (2013) Review of the Brazilian NBR 15575 standard: applying the simulation and simplified methods for evaluating a social house thermal performance. Proceedings of the Symposium on Simulation for Architecture and Urban Design. San Diego: SimAUD.

Dalbem, R.; Grala da Cunha, E.; Vicente, R.; Figueiredo, A.; Oliveira, R.; Silva, A.C. (2019) Optimisation of a social housing for south of Brazil: From basic performance standard to passive house concept. Energy. 167, 1278-1296. https://doi.org/10.1016/j.energy.2018.11.053

Silva, E.P.; Melo, A.B.; Queiroga, A.B.R.E. (2013) Desempenho térmico de vedações: estudo comparativo com blocos de eva, tijolo cerâmico e gesso acartonado. Proceedings of the Encontro Nacional de Conforto no Ambiente Construído. Brasília (ENCAC).

Lakatos, A. (2017) Investigation of the moisture induced degradation of the thermal properties of aerogel blankets: Measurements, calculations, simulations. Energy Build. 139, 506-516. https://doi.org/10.1016/j.enbuild.2017.01.054

Souza, C.R.N. (2015) Estudo da condutividade térmica do gesso (CaSO4 0,5 H2O) em função de sua porosidade. Master's Thesis, Universidade Federal do Vale do São Francisco, Juazeiro, Brazil.

Specht, L.P.; Borges P.A.P.; Rupp, R.F.; Varnier, R. (2010) Análise da transferência de calor em paredes compostas por diferentes materiais. Amb. Constr. 10, 7-18. https://doi.org/10.1590/S1678-86212010000400002

Otteléa, M.; Perinib, K. (2017) Comparative experimental approach to investigate the thermal behaviour of vertical greened façades of buildings. Ecol. Eng. 108 [Part A], 152-161. https://doi.org/10.1016/j.ecoleng.2017.08.016

Silva, E.P.; Cahino, J.E.M.; Melo, A.B. (2012) Avaliação do desempenho térmico de blocos EVA, Proceedings of the Encontro Nacional de Tecnologia no Ambiente Construído, Juiz de Fora (ENTAC).

Allam, R.; Issaadi, N.; Belarbi, R.; El-Meligy, M.; Altahrany, A. (2018) Hygrothermal behavior for a clay brick wall. J. Heat Mass. 54, 1579-1591. https://doi.org/10.1007/s00231-017-2271-5

Danieslki, I.; Fröling, M. (2015) Diagnosis of buildings' thermal performance: a quantitative method using thermography under non-steady state heat flow. Energy Procedia. 83, 320-329. https://doi.org/10.1016/j.egypro.2015.12.186

Liu, C.; Zhang, Z. (2019) Thermal response of wall implanted with heat pipes: Experimental analysis. Renew. Energy. 143, 1687-1697. https://doi.org/10.1016/j.renene.2019.05.123

Bauer, E.; Leal, F.E. (2013) Condicionantes das medições termográficas para avaliação da temperatura em fachadas. Proceedings of the X Simpósio Brasileiro de Tecnologia das Argamassas. Porto Alegre (X SBTA).

Ibañez Puy, M.; Viadurre-Arbizu, M.; Sacristán-Fernández, J.A.; Martín Gómez, F.C. (2017) Opaque Ventilated Façades: Thermal and energy performance review. Renew. Sust. Energ. Rev. 79, 180-191. https://doi.org/10.1016/j.rser.2017.05.059

Marques, D.F.P.C. (2014) Avaliação da qualidade térmica da envolvente de edifícios - Estudo de caso através da análise numérica e por termografia infravermelha. Master's Thesis, Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Porto, Portugal.

Kylili, A.; Fokaides, P.A.; Christou, P.; Kalogirou, S.A. (2014) Infrared thermography (IRT) applications for building diagnostics: A review. Appl. Energy. 134, 531-549. https://doi.org/10.1016/j.apenergy.2014.08.005

Shariq, M.H.; Hughes, B.R. (2020) Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art. Renew. Sust. Energ. Rev. 130, 109979. https://doi.org/10.1016/j.rser.2020.109979

François, A.; Ibos, L.; Feuillet, V.; Meulemans, J. (2021) In situ measurement method for the quantification of the thermal transmittance of a non-homogeneous wall or a thermal bridge using an inverse technique and active infrared thermography. Energy Build. 233, 110633. https://doi.org/10.1016/j.enbuild.2020.110633

Lamrani, M.; Laaroussi, N.; Khabbazi, A.; Khalfaoui, M.; Garoum, M.; Feiz, A. (2017) Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Stud. Constr. Mater. 7, 294-304. https://doi.org/10.1016/j.cscm.2017.09.006

Rahmanian, I.; Wang, Y.C. (2012) A combined experimental and numerical method for extracting temperature-dependent thermal conductivity of gypsum boards. Constr. Build. Mater. 26, 707-722. https://doi.org/10.1016/j.conbuildmat.2011.06.078

Yu, J.; Yang, J.; Xiong, C. (2015) Study of dynamic thermal performance of hollow block ventilated wall. Renew. Energy. 84, 145-151. https://doi.org/10.1016/j.renene.2015.07.020

Iucolano, F.; Liguori, B.; Aprea, P.; Caputo, D. (2018) Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Constr. Build. Mater. 185, 256-263. https://doi.org/10.1016/j.conbuildmat.2018.07.036

.

Uriarte-Flores, J.; Xamán, J.; Chávez, Y.; Hernández-López, I.; Moraga, N.O.; Aguilar, J.O. (2019) Thermal performance of walls with passive cooling techniques using traditional materials available in the Mexican market. Appl. Therm. Eng. 149, 1154-1169. https://doi.org/10.1016/j.applthermaleng.2018.12.045

Kheradmand, M.; Azenha, M.; de Aguiar, J.L.; Castro-Gomes, J. (2016) Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings. Energy. 94, 250-261. https://doi.org/10.1016/j.energy.2015.10.131

Pedreño-Rojas, M.A.; Morales-Conde, M.J.; Pérez-Gálvez, F.; Rodríguez-Liñán, C. (2017) Eco-efficient acoustic and thermal conditioning using false ceiling plates made from plaster and wood waste. J. Clean. Prod. 166, 690-705. https://doi.org/10.1016/j.jclepro.2017.08.077

Toppi, T.; Mazzarella, L. (2013) Gypsum based composite materials with micro-encapsulated PCM: Experimental correlations for thermal properties estimation on the basis of the composition. Energy Build. 57, 227-236. https://doi.org/10.1016/j.enbuild.2012.11.009

Belayachi, N.; Hoxha, D.; Slaimia, M. (2016) Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Constr. Build. Mater. 125, 912-918. https://doi.org/10.1016/j.conbuildmat.2016.08.120

Bicer, A.; Kar, F. (2017) Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Therm. Sci. Eng. Prog. 1, 59-65. https://doi.org/10.1016/j.tsep.2017.02.008

Al-Naghi, A.A.A.; Rahman, M.K.; Al-Amoudi, O.S.B.; Al-Dulaijan, S.U. (2020) Thermal performance evaluation of walls with AAC blocks, insulating plaster, and reflective coating. J. Energy Eng. 146, 04019040. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000636

Batista, P.I.B. (2019). Parâmetros de desempenho térmico de blocos de gesso, Master's Thesis. Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Brazil.

Delgado, J.M.P.Q.; Paula, P. (2018) Hygrothermal performance evaluation of gypsum plaser houses in Brazil. In: J. Delgado, A. Barbosa de Lima (Eds). Transport phenomena in multiphase systems, advanced structured materials. 93, 1-53. United States: Springer. https://doi.org/10.1007/978-3-319-91062-8_1

Santos, A.N. (2017) Comportamento higrotérmico de paredes em gesso: avaliação da adequabilidade a zonas climáticas do Brasil, PhD Thesis, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.

Costa e Silva, A.J.; Peres, L. (2016) Como construir: execução de alvenaria não estrutural de blocos de gesso. Revista Techne, Brasil:Pini.

Neves, M.L.R. (2011) Método construtivo de vedação vertical interna com blocos de gesso. Master's Thesis. Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, Brazil.

Pires Sobrinho, C.W. (2010) Divisórias internas de edifícios em alvenaria de blocos de gesso- Vantagens técnicas, económicas e ambientais. Proceedings of the Congresso Internacional de Tecnologia Aplicada para a Arquitetura & Engenharia Sustentáveis. Recife.

Associação Brasileira de Normas Técnicas (2017) NBR 16494: Bloco de gesso para vedação vertical - Requisitos. ABNT, Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2017) NBR 13207: Gesso para construção civil - Requisitos. ABNT, Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2019) NBR 12127: Gesso para construção civil - Determinação das propriedades físicas do pó. ABNT, Rio de Janeiro.

Associação Brasileira de Normas Técnicas (2019) NBR 12129: Gesso para construção civil - Determinação das propriedades mecânicas. ABNT, Rio de Janeiro.

American Society for Testing and Materials (2005) ASTM C1363. Standard test method for thermal performance of building materials and envelope assemblies by means of a hot box apparatus. West Consohoken: ASTM.

Ferrari, S.; Zanotto, V. (2013) The thermal performance of walls under actual service conditions: Evaluating the results of climatic chamber tests. Constr. Build. Mater. 43, 309-316. https://doi.org/10.1016/j.conbuildmat.2013.02.056

FLIR (2014) User's manual FLIR Exx Series, first ed. Wilsonville: FLIR.

Zhao, D.; Qian, X.; Gu, X.; Jajja, S.A.; Yang, R. (2016) Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Packag. 138 [4], 040802. https://doi.org/10.1115/1.4034605

NETZSCH (2010) Operating instructions of Heat Flow Meter HFM 436/6 Lambda, NETZSCH, Selb, Germany.

Incropera, F.P.; Dewitt, D.P. (2008) Fundamentos de transferência de calor e de massa, sixth ed., Rio de Janeiro: Guanabara Koogan.

Callister, W.; Rethwisch, D. (2018) Materials science and engineering: an introduction. New York: Wiley.

Correia, C.; Souza, M. (2009) Mechanical strength and thermal conductivity of low-porosity gypsum plates. Mater. Res. 12 [1], 95-99. https://doi.org/10.1590/S1516-14392009000100012

Huelsz, G.; Barrios, G.; Rojas, J. (2016) Equivalent-homogeneous-layers-set method for time-dependent heat transfer through hollow-block walls. Appl. Therm. Eng. 102, 1019-1023. https://doi.org/10.1016/j.applthermaleng.2016.03.113

Mansour, M.B.; Soukaina, C.A.; Benhamou, B.; Jabrallah, S.B. (2013) Thermal characterization of a Tunisian gypsum plaster as construction material. Energy Procedia. 42, 680-688. https://doi.org/10.1016/j.egypro.2013.11.070

Zhang, Y.; Du, K.; He, J.; Yang, L.; Li, Y.; Li, S. (2014). Impact factors analysis on the thermal performance of hollow block wall. Energy Build. 75:330-341. https://doi.org/10.1016/j.enbuild.2014.02.037

Bianco, L.; Serra, V.; Fantucci, S.; Dutto, M.; Massolino, M. (2015) Thermal insulating plaster as a solution for refurbishing historic building envelopes: First experimental results. Energy Build. 95, 86-91. https://doi.org/10.1016/j.enbuild.2014.11.016

Asdrubali, F.; D'Alessandro, F.; Baldinelli, G.; Bianchi, F. (2014) Evaluating in situ thermal transmittance of green buildings masonries-A case study. Case Stud. Constr. Mater. 1, 53-59. https://doi.org/10.1016/j.cscm.2014.04.004

Simões, I.; Simões, N.; Tadeu, A. (2012) Thermal delay simulation in multilayer systems using analytical solutions. Energy Build. 49, 631-639. https://doi.org/10.1016/j.enbuild.2012.03.005

Tadeu, A.; Moreira, A.; António, J.; Simões, N.; Simões, I. (2014) Thermal delay provided by floors containing layers that incorporate expanded cork granule waste. Energy Build. 68, 611-619. https://doi.org/10.1016/j.enbuild.2013.10.007

He, Z.; He, Z.; Zhang, X.; Li, Z. (2015) Study of hot air recirculation and thermal management in data centers by using temperature rise distribution. Build. Simul. 9, 541-55. https://doi.org/10.1007/s12273-016-0282-7

de Freitas, S.S.; de Freitas, V.P.; Barreira, E. (2014) Detection of façade plaster detachments using infrared thermography-A nondestructive technique. Constr. Build. Mater. 70, 80-87. https://doi.org/10.1016/j.conbuildmat.2014.07.094

Theodorakeas, P.; Avdelidis, N.P.; Cheilakou, E.; Koui, M. (2014) Quantitative analysis of plastered mosaics by means of active infrared thermography. Constr. Build. Mater. 73, 417-425. https://doi.org/10.1016/j.conbuildmat.2014.09.089

Published

2023-05-24

How to Cite

Bezerra Batista , P. I. ., Aquino Rocha, J. H., & Vieira Póvoas, Y. (2023). Parameters of thermal performance of plaster blocks: Experimental analysis. Materiales De Construcción, 73(350), e314. https://doi.org/10.3989/mc.2023.299322

Issue

Section

Research Articles