Utilisation of phosphogypsum along with other additives in geo- engineering- A review





Phosphogypsum, Geotechnical applications, By-products, Strength parameters


Various adverse effects and hydro-mechanical failures of soil are the dominant effects of global warming. At the same time, rapid industrial development has produced several by-products on a large scale. The reuse of industrial residues in different engineering fields without compromising the technical characteristics is propitious from the engineering, environmental, ecological and economic points of view. Phosphogypsum (PG) can be used as an alternative civil engineering material as it is rich in calcium sulphate, although it contains some radioactive molecules. Researchers are continuing to investigate the utilisation of PG by mixing it with other traditional materials to convert into alternative materials when the radioactive minerals are within the permissible limits. However, the contamination effect can be reduced by treating with citric acid. This review paper presents details of the increase in strength parameters and permeability of PG when combined with other wastes materials used in different geotechnical fields.


Download data is not yet available.


Vardon, P.J. (2015) Climatic influence on geotechnical infrastructure: a review. Environ. Geotech. 2 [3], 166-174. https://doi.org/10.1680/envgeo.13.00055

Trenberth, K.E. (2011) Changes in precipitation with climate change. Clim. Res. 47 [1-2], 123-138. https://doi.org/10.3354/cr00953

Tayibi, H.; Gascó, C.; Navarro, N.; López-Delgado, A.; Choura, M.; Alguacil, F.J.; López, F.A. (2011) Radiochemical characterization of phosphogypsum for engineering use. J. Environ. Prot. 02, 168-174. https://doi.org/10.4236/jep.2011.22019

Saadaoui, E.; Ghazel, N.; Ben Romdhane, C.; Massoudi, N. (2017) Phosphogypsum: potential uses and problems - a review. Int. J. Environ. Stud. 74, 558-567. https://doi.org/10.1080/00207233.2017.1330582

Rashad, A.M. (2015) Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. J. Clean. Prod. 87, 717-725. https://doi.org/10.1016/j.jclepro.2014.09.080

Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. (2009) Environmental impact and management of phosphogypsum. J. Environ. Manage. 90 [8], 2377-2386. https://doi.org/10.1016/j.jenvman.2009.03.007 PMid:19406560

Singh, M.; Garg, M. (1997) Durability of cementitious binder derived from industrial wastes. Mater. Struct. 30 [10], 607-612. https://doi.org/10.1007/BF02486902

Yang, J.; Liu, W.; Zhang, L.; Xiao, B. (2009) Preparation of load-bearing building materials from autoclaved phosphogypsum. Constr. Build. Mater. 23 [2], 687-693. https://doi.org/10.1016/j.conbuildmat.2008.02.011

Singh, M. (2002) Treating waste phosphogypsum for cement and plaster manufacture. Cem. Concr. Res. 32 [7], 1033-1038. https://doi.org/10.1016/S0008-8846(02)00723-8

Garg, M.; Singh, M.; Kumar, R. (1996) Some aspects of the durability of a phosphogypsum-lime-fly ash binder. Constr. Build. Mater. 10 [4], 273-279. https://doi.org/10.1016/0950-0618(95)00085-2

USEPA (2002) U.S. Environmental Protection Agency, 2002. National emission standards for hazardous air pollutants, Subpart R.

Rashad, A.M. (2017) Phosphogypsum as a construction material. J. Clean. Prod. 166, 732-743. https://doi.org/10.1016/j.jclepro.2017.08.049

Parreira, A.B.; Kobayashi, A.R.K.; Silvestre, O.B. (2003) Influence of portland cement type on unconfined compressive strength and linear expansion of cement-stabilized phosphogypsum. J. Environ. Eng. 129, 956-960. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:10(956)

Mishra, C.S.K.; Nayak, S.; Guru, B.C.; Rath, M. (2010) Environmental impact and management of wastes from phosphate fertilizer plants. J. Ind. Pollut. Control. 26 [1], 57-60.

Tirado, R.; Allsopp, M. (2012) Phosphorus in agriculture: problems and solutions. Greenpeace Research Laboratories Technical Report (Review).

Gaidajis, G.; Anagnostopoulos, A.; Garidi, A.; Mylona, E.; Zevgolis, I.E. (2018) Laboratory evaluation of phosphogypsum for alternative uses. Environ. Geotech. 5 [6], 310-323. https://doi.org/10.1680/jenge.16.00040

SENES Consultants Limited (1987) An analysis of the major environmental and health concerns of phosphogypsum tailings in Canada and methods for their reduction. Alberta Environment, Canada.

Wędrychowicz, M.; Bydałek, A.W.; Skrzekut, T.; Noga, P.; Gabryelewicz, I.; Madej, P. (2019) Analysis of the mechanical strength, structure and possibilities of using waste phosphogypsum in aluminum powder composites. SN Appl. Sci. 1 [9], 992. https://doi.org/10.1007/s42452-019-0995-1

Zairi, M.; Rouis, M.J. (1999) Environmental impacts of the storage of phosphogypsum in Sfax (Tunisia). Tunisia.

Mesić, M.; Brezinščak, L.; Zgorelec, Ž.; et al. (2016) The application of phosphogypsum in agriculture. Agric. Conspec. Sci. 81 [1], 7-13.

Bhawan, P.; Nagar, A. (2014) Guidelines for management and handling of phosphogypsum generated from phosphoric acid plants (Final Draft). Central Pollution Control Board (Ministry of Environment & Forests).

Mashifana, T.; Okonta, F.N.; Ntuli, F. (2018) Geotechnical properties and application of lime modified phosphogypsum waste. Mater. Sci. 24 [3], 312-318. https://doi.org/10.5755/j01.ms.24.3.18232

Arman, A.; Seals, R.K. (1990) A preliminary assessment of utilization alternatives for phosphogypsum. In: Proceedings of the Third International Symposium on Phosphogypsum. FL, FIPR Pu. No. 01-060, p. 083, Orlando.

Degirmenci, N.; Okucu, A.; Turabi, A. (2007) Application of phosphogypsum in soil stabilization. Build. Environ. 42 [9], 3393-3398. https://doi.org/10.1016/j.buildenv.2006.08.010

Kacimi, L.; Simon-Masseron, A.; Ghomari, A.; Derriche, Z. (2006) Reduction of clinkerization temperature by using phosphogypsum. J. Hazard. Mater. 137 [1], 129-137. https://doi.org/10.1016/j.jhazmat.2005.12.053 PMid:16533556

Folek, S.; Walawska, B.; Wilczek, B.; Miśkiewicz, J. (2011). Use of phosphogypsum in road construction. Pol. J. Chem. Technol. 13 [2], 18-22. https://doi.org/10.2478/v10026-011-0018-5

May, A.; Sweeney, J.W. (1982) Assessment of environmental impacts associated with phosphogypsum in Florid. Florida.

Carter, O.C.; Scheiner, B. J. (1992) Investigation of metal and non-metal migration through phosphogypsum. In: AIME proceedings on the symposium on emerging process technologies for a cleaner environment. pp 205-210.

Berish, C.W. (1990) Potential environmental hazards of phosphogypsum storage in central Florida. In: Proceedings of the third international symposium on phosphogypsum. FL, FIPR Pub. No. 01060083, Orlando.

Reijnders, L. (2007) Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review. Build. Environ. 42 [2], 1036-1042. https://doi.org/10.1016/j.buildenv.2005.09.016

Guo, T.; Malone, R.F.; Rusch, K.A. (2001) Stabilized phosphogypsum: class C fly ash: Portland type II cement composites for potential marine application. Environ. Sci. Technol. 35 [19], 3967-3973. https://doi.org/10.1021/es010520+ PMid:11642462

Rajkovic, M.B.; Toskovic, D.V. (2003) Phosphogypsum surface characterisation using scanning electron microscopy. Acta Period. Technol. 34, 61-70. https://doi.org/10.2298/APT0334061R

Lysandrou, M.; Pashalidis, I. (2008) Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus. J. Environ. Radioact. 99 [2], 359-366. https://doi.org/10.1016/j.jenvrad.2007.08.005 PMid:17892903

Pérez-López, R.; Álvarez-Valero, A.M.; Nieto, J.M. (2007) Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J. Hazard. Mater. 148 [3], 745-750. https://doi.org/10.1016/j.jhazmat.2007.06.068 PMid:17683858

Rutherford, P.M.; Dudas, M.J.; Samek, R.A. (1994) Environmental impacts of phosphogypsum. Sci. Total Environ. 149 [1-2], 1-38. https://doi.org/10.1016/0048-9697(94)90002-7

Federal Register 13480. (1990).

EPA (1998) Code of Federal Regulations, 1998. Title 40 7: Parts 61.202 and 61.204 (40CFR61.202 and 40CFR61.204.

EURATOM Council Directive 96/26 EC. (1996).

Federal Register (1999) 40 CFR Part 61, Subpart 61, 64: pp. 5573-5580.

Kumar, S. (2002) A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development. Constr. Build. Mater. 16, 519-525. https://doi.org/10.1016/S0950-0618(02)00034-X

Vásconez-Maza, M.D.; Martínez-Segura, M.A.; Bueso, M.C.; Faz, Á.; García-Nieto, M.C.; Gabarrón, M.; Acosta, J.A. (2019) Predicting spatial distribution of heavy metals in an abandoned phosphogypsum pond combining geochemistry, electrical resistivity tomography and statistical methods. J. Hazard. Mater. 374, 392-400. https://doi.org/10.1016/j.jhazmat.2019.04.045 PMid:31028918

Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. (2020) Phosphogypsum recycling: New horizons for a more sustainable road material application. J. Build. Eng. 30, 101267. https://doi.org/10.1016/j.jobe.2020.101267

Farroukh, H.; Mnif, T.; Kamoun, F.; Kamoun, L.; Bennour, F. (2018) Stabilization of clayey soils with Tunisian phosphogypsum: effect on geotechnical properties. Arab. J. Geosci. 11 [23], 760. https://doi.org/10.1007/s12517-018-4116-z

James, J.; Kasinatha Pandian, P. (2016) Plasticity, swell-shrink, and microstructure of phosphogypsum admixed lime stabilized expansive soil. Adv. Civ. Eng. 2016, 9798456. https://doi.org/10.1155/2016/9798456

Mashifana, T.P.; Okonta, F.N.; Ntuli, F. (2018) Geotechnical properties and microstructure of lime-fly ash-phosphogypsum-stabilized soil. Adv. Civ. Eng. 2018, 3640868. https://doi.org/10.1155/2018/3640868

Xiao, W.; Yao, X.; Zhang, F. (2019) Recycling of oily sludge as a roadbed material utilizing phosphogypsum-based cementitious materials. Adv. Civ. Eng. 2019, 6280715. https://doi.org/10.1155/2019/6280715

Bumanis, G.; Zorica, J.; Bajare, D.; Korjakins, A. (2018) Technological properties of phosphogypsum binder obtained from fertilizer production waste. Energy Proc. 147, 301-308. https://doi.org/10.1016/j.egypro.2018.07.096

Tsioka, M.; Voudrias, E.A. (2020) Comparison of alternative management methods for phosphogypsum waste using life cycle analysis. J. Clean. Prod. 266, 121386. https://doi.org/10.1016/j.jclepro.2020.121386

U.S. Environmental Protection Agency, 1990.

Landa, E. R. (2007) Naturally occurring radionuclides from industrial sources: characteristics and fate in the environment. In: Radioactivity in the Environment. 211-237. https://doi.org/10.1016/S1569-4860(06)10010-8

Iqbal, H.; Anwar, B.M.; Hanif, U.; et al. (2015) Leaching of metals, organic carbon and nutrients from municipal waste under semi-arid conditions. Int. J. Environ. Res. 9 [1], 187-196.

Rusch, K.A.; Guo, T.; Seals, R.K. (2002) Stabilization of phosphogypsum using class C fly ash and lime: assessment of the potential for marine applications. J. Hazard. Mater. 93 [2], 167-186. https://doi.org/10.1016/S0304-3894(02)00009-2

Koopman, C. (2001) Purification of gypsum from the phosphoric acid production by recrystallization with simultaneous extraction. PhD. dissertation. DSM Research Geleen Centre for Particle Technology.

Singh, M.; Garg, M.; Rehsi, S.S. (1993) Purifying phosphogypsum for cement manufacture. Constr. Build. Mater. 7 [1], 3-7. https://doi.org/10.1016/0950-0618(93)90018-8

Aly, M.M.; Mohammed, N.A. (1999) Recovery of lanthanides from Abu Tartur phosphate rock, Egypt. Hydrometallurgy. 52 [2], 199-206. https://doi.org/10.1016/S0304-386X(99)00018-3

Singh, M.; Garg, M.; Verma, C.L.; Handa, S.K.; Kumar, R. (1996) An improved process for the purification of phosphogypsum. Constr. Build. Mater. 10 [8], 597-600. https://doi.org/10.1016/S0950-0618(96)00019-0

El-Didamony, H.; Ali, M.M.; Awwad, N.; Fawzy, M.M.; Attallah, M. (2012) Treatment of phosphogypsum waste using suitable organic extractants. J. Radioanal. Nucl. Chem. 291, 907-914. https://doi.org/10.1007/s10967-011-1547-3 PMid:26224916 PMCid:PMC4514008

Koopman, C.; Witkamp, G.J. (2002) Ion exchange extraction during continuous recrystallization of CaSO4 in the phosphoric acid production process: lanthanide extraction efficiency and CaSO4 particle shape. Hydrometallurgy. 63 [2], 137-147. https://doi.org/10.1016/S0304-386X(01)00219-5

Santos, E.A.; Ladeira, A.C.Q. (2011) Recovery of uranium from mine waste by leaching with carbonate-based reagents. Environ. Sci. Technol. 45 [8], 3591-3597. https://doi.org/10.1021/es2002056 PMid:21434650

Fernandes, H.M.; Veiga, L.H.S.; Franklin, M.R.; Prado, V.C S.; Taddei, J.F. (1995). Environmental impact assessment of uranium mining and milling facilities: a study case at the Poços de Caldas uranium mining and milling site, Brazil. J. Geochem. Explor. 52 [1-2], 161-173. https://doi.org/10.1016/0375-6742(94)00043-B

Merritt, C.R. (1971) Extractive metallurgy of uraniu. Colorado School of Mines Research Institute.

(1997) Congress Catalog Card (No. 71-157076).

Mashifana, T. (2019) Evaluation of raw and chemically treated waste phosphogypsum and its potential applications. In: Iticescu C, Guo Z (eds) E3S Web of Conferences. p 02004. https://doi.org/10.1051/e3sconf/20199602004

Al-Jabbari, S.; Faisal, F.; Ali, S.; Nasir, S. (1988) The physical methods for purification of the phosphogypsum for using it as building material. J. Build. Res. Sci. Res. Council Baghdad. 7, 49-69.

Guidelines for management and handling of phosphogypsum generated from phosphoric acid plants (Draft copy) (2012) Central Pollution Control Board New Delhi India. (2012).

Campos, M.P.; Costa, L.J.P.; Nisti, M.B.; Mazzilli, B.P. (2017) Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate. J. Environ. Radioact. 172, 232-236. https://doi.org/10.1016/j.jenvrad.2017.04.002 PMid:28395156

Sivapullaiah, P.V.; Jha, A.K. (2014) Gypsum induced strength behaviour of fly ash-lime stabilized expansive soil. Geotech. Geol. Eng. 32 [5], 1261-1273. https://doi.org/10.1007/s10706-014-9799-7

Kumar, S.; Tilak, V.; Dutta, R.K. (2017) Engineering properties of bentonite-lime-phosphogypsum composite reinforced with treated sisal fibers. Period. Polytech-Civ. 61 [3], 554-563. https://doi.org/10.3311/PPci.8183

Silva, M.V.; de Rezende, L.R.; Mascarenha, M.M.A.; de Oliveira, R.B. (2019) Phosphogypsum, tropical soil and cement mixtures for asphalt pavements under wet and dry environmental conditions. Resour. Conserv. Recycl. 144, 123-136. https://doi.org/10.1016/j.resconrec.2019.01.029

Ho, L.S.; Nakarai, K.; Ogawa, Y.; Sasaki, T.; Morioka, M. (2017) Strength development of cement-treated soils: Effects of water content, carbonation, and pozzolanic reaction under drying curing condition. Constr. Build. Mater. 134, 703-712. https://doi.org/10.1016/j.conbuildmat.2016.12.065

Babu, R.D.; Raviteja, K.V.N.S.; Varaprasad, L.N.V.N. (2019) Strength characterization of expansive soil treated with phosphogypsum and crumb waste rubber. In: Geo-Congress 2019. ASCE, Reston, VA, pp 315-324. https://doi.org/10.1061/9780784482117.032

Peaveen, S. (2019) A study on high expensive black cotton soil to find out the properties with the help of mixing other soil stabilising material. Int. J. Bus. Eng. Res. 1-11.

Mashifana, T.P.; Okonta, F. N.; Ntuli, F. (2019) Development of low content phosphogypsum waste composites modified by lime-fly ash-basic oxygen furnace slag. Rev. Rom. Mater. 49 [2], 294-302.

Maazoun, H.; Bouassida, M. (2019) Phosphogypsum management challenges in Tunisia. 88-104. https://doi.org/10.1007/978-3-030-01941-9_7

Sudhakar, P.; Ramesh Babu, V.; Ramesh Babu, B. (2016) A study on subgrade characteristics of black cotton soil treated with lime and phosphogypsum. IRJET. 3, 12.

Divya Krishnan, K.; Deepika, M.; Ravichandran, P.T.; Sudha, C.; Kottuppillil, A.K. (2016) Study on behaviour of soil with phosphogypsum as stabiliser. Indian J. Sci. Technol. 9 [23], 1-5. https://doi.org/10.17485/ijst/2016/v9i23/95980

Kumar Dutta, R.; Khatri, V.N.; Panwar, V. (2017) Strength characteristics of fly ash stabilized with lime and modified with phosphogypsum. J. Build. Eng. 14, 32-40. https://doi.org/10.1016/j.jobe.2017.09.010

Farroukh, H.; Mnif, T.; Kamoun, F.; Kamoun, L.; Bennour, F. (2017) Investigation of the strength development in tunisian phosphogypsum-stabilized sensitive clayey soils: Assess of geotechnical properties and environmental impact. ASRJETS. 29 [1], 153-166.

Devipriya, P.V.; Chandrakaran, S. (2017) Effect of phosphogypsum as a stabilizing agent for swelling clays. J. Recent Advanc. Geotech. Engineer.

Chen F.H. (1975) Foundations on Expansive Soils. Elsevier.

Bian, X.; Zeng, L.; Ji, F.; Xie, M.; Hong, Z. (2022) Plasticity role in strength behavior of cement-phosphogypsum stabilized soils. J. Rock Mech. Geotech. Eng. (in press) https://doi.org/10.1016/j.jrmge.2022.01.003

Satyaveni, B.; Sridevi, K.; Sivanarayana, C.; Prasad, D.S. (2018) A study on strength characteristics of baggasse ash and phospho gypsum treated marine clay. Int. J. Civ. Eng. 5 [7], 11-16. https://doi.org/10.14445/23488352/IJCE-V5I7P103

Harrou, A.; Gharibi, E.; Nasri, H.; Fagel, N.; El Ouahabi, M. (2020) Physico-mechanical properties of phosphogypsum and black steel slag as aggregate for bentonite-lime based materials. Mater. Today Proc. 31, S51-S55. https://doi.org/10.1016/j.matpr.2020.05.819

Yu, Z.H.; Gui, Y.; Zhang, Q.; Kong, X.Y. (2013) Experimental study on the stabilization effects of dredged sludge by fly ash or phosphogypsum. Adv. Mater. Res. 689, 342-347. https://doi.org/10.4028/www.scientific.net/AMR.689.342

Dhanasekar, K.; Nagarajan, T.N.; Rajarajachozhan, R.; Sriaadith, V.; Vignesh, S. (2021). Stabilization of black cotton soil using lime and phosphogypsum. Int. J. Emerg. Trends Engineer. Res. 9 [4], 503-507. https://doi.org/10.30534/ijeter/2021/29942021

Shen, W.; Zhou, M.; Zhao, Q. (2007) Study on lime-fly ash-phosphogypsum binder. Constr. Build. Mater. 21 [7], 1480-1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010

Chew, S.H.; Kamruzzaman, A.H.M.; Lee, F.H. (2004) Physicochemical and engineering behavior of cement treated clays. J. Geotech. Geoenviron. Eng. 130 [7], 696-706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)

Du, Y-J.; Jiang, N-J.; Liu, S-Y.; Jin. F.; Singh, D.N.; Puppala, A.J. (2014) Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin. Can. Geotech. J. 51, 289-302. https://doi.org/10.1139/cgj-2013-0177

Hunter, D. (1988) Lime-induced heave in sulfate-bearing slay soils. J. Geoteh. Eng. 114 [2], 150-167. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(150)

E.M. Gartner (2002) Hydration of Portland cement. In: Structure and performance of cements. CRC Press, 75-131. https://doi.org/10.1201/9781482295016-9

Zeng, L-L.; Bian, X.; Zhao, L.; Wng, Y.J.; Hong, J.S. (2021) Effect of phosphogypsum on physiochemical and mechanical behaviour of cement stabilized dredged soil from Fuzhou, China. Geomech. Energy Environ. 25, 100195. https://doi.org/10.1016/j.gete.2020.100195

Chrysochoou, M.; Grubb, D.G.; Drengler, K.L.; Malasavage, N.E. (2010) Stabilized dredged material. III: Mineralogical perspective. J. Geotech. Geoenviron. Eng. 136 [8], 1037-1050. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000292

Little DN (1999) Evaluation of structural properties of lime stabilized soils and aggregates. National Lime Association.

Lorenzo, G.A.; Bergado, D.T. (2004) Fundamental parameters of cement-admixed clay-New approach. J. Geotech. Geoenviron. Eng. 130 [10], 1042-1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042)

Xue, S.; Li, M.; Jiang, J.; Millar, G.J.; Li, C.; Kong, X. (2019) Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics. J. Env. Sci. 77, 1-10. https://doi.org/10.1016/j.jes.2018.05.016 PMid:30573073

Wang, T.; He, Y.; Zhao, X.; Wang, S. (2019) Dynamic stability analysis of the Laizigou phosphogypsum tailings pond. In: 53rd US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.

Rong, K.; Lan, W.; Li, H. (2020) Industrial experiment of goaf filling using the filling materials based on hemihydrate phosphogypsum. Minerals. 10 [4], 324. https://doi.org/10.3390/min10040324

Pollard, S.J.T.; Montgomery, D.M.; Sollars, C.J.; Perry, R. (1991) Organic compounds in the cement-based stabilisation/ solidification of hazardous mixed wastes-Mechanistic and process considerations. J. Hazard. Mater. 28 [3], 313-327. https://doi.org/10.1016/0304-3894(91)87082-D

Puppala, A.J.; Intharasombat, N.; Vempati, R.K. (2005) Experimental studies on ettringite-induced heaving in soils. J. Geotech. Geoenviron. Eng. 131 [3], 325-337. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(325)

Pu, S.; Zhu, Z.; Huo, W. (2021) Evaluation of engineering properties and environmental effect of recycled gypsum stabilized soil in geotechnical engineering: A comprehensive review. Resour. Conserv. Recycl. 174, 105780. https://doi.org/10.1016/j.resconrec.2021.105780

Aboutabikh, M.; Soliman, A.M.; El Naggar, M.H. (2016) Properties of cementitious material incorporating treated oil sands drill cuttings waste. Constr. Build. Mater. 111, 751-757. https://doi.org/10.1016/j.conbuildmat.2016.02.163

Jianli, M.; Youcai, Z.; Jinmei, W.; Li, W. (2010). Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge. Constr. Build. Mater. 24 [1], 79-83. https://doi.org/10.1016/j.conbuildmat.2009.08.011

Tremblay, H.; Duchesne, J.; Locat, J.; Leroueil, S. (2002) Influence of the nature of organic compounds on fine soil stabilization with cement. Can. Geotech. J. 39 [3], 535-546. https://doi.org/10.1139/t02-002

Sudhakar, M.R.; Shivananda, P. (2005) Role of curing temperature in progress of lime-soil reactions. Geotech. Geol. Eng. 23, 79. https://doi.org/10.1007/s10706-003-3157-5



How to Cite

Anamika, B. ., & Debabrata, G. . (2022). Utilisation of phosphogypsum along with other additives in geo- engineering- A review. Materiales De Construcción, 72(347), e288. https://doi.org/10.3989/mc.2022.01322



Research Articles