Enzyme-induced carbonate precipitation utilizing synthetic Ca2+-zeolite for low ammonium

Authors

DOI:

https://doi.org/10.3989/mc.2023.302522

Keywords:

Urea hydrolysis, Ammonium, Ion exchange material, Calcium-modified zeolite, EICP, Soil stabilization

Abstract


In this study, a low-ammonium enzyme-induced carbonate precipitation (LA-EICP) technique is proposed that utilizes the cation exchange capability of zeolite to remove ammonium, an environmentally harmful by-product of urea hydrolysis. The LA-EICP process is a modified enzyme-induced carbonate precipitation (EICP) suitable for soil stabilization, by mixing zeolite and resulting solution of urea hydrolysis. The amounts of calcium carbonate precipitated and ammonium ions removed by the synthetic calcium-modified zeolite were analyzed through tube precipitation tests. In addition, the unconfined compressive strengths of the soil specimens were measured and compared to investigate the reinforcing effect of LA-EICP. The precipitation of calcium carbonate within the soil specimen was also confirmed by scanning electron microscope and energy dispersive spectrometry analyses. The results showed LA-EICP can precipitate the same amount of calcium carbonate as conventional EICP, while removing almost all ammonium ions. In addition, the LA-EICP-treated specimen showed a higher strength improvement than the conventional EICP-treated specimen, due to the combined effect of the calcium carbonate and the zeolite.

Downloads

Download data is not yet available.

Author Biography

Jongmin Kim, Sejong university

Department of Civil and Environmental Engineering, Sejong University, Seoul 05006, Korea

References

Namati, M.; Voordouw, G. (2003) Modification of porous media permeability using calcium carbonate produced enzymatically in situ. Microb. Technol. 33 [5], 635-642. https://doi.org/10.1016/S0141-0229(03)00191-1

Park, S.S.; Choi, S.G.; Nam, I.H. (2012) Development of soil binder using plant extracts. Journal of the Korean Geotechnical Society. 28 [3], 67-75. https://doi.org/10.7843/kgs.2012.28.3.67

Yasuhara, H.; Neupane, D.; Hayashi, K.; Okamura, M. (2012) Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils. Found. 52 [3], 539-549. https://doi.org/10.1016/j.sandf.2012.05.011

Neupane, D.; Yasuhara, H.; Kinoshita, N.; Unno, T. (2013) Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. J. Geotech. Geoenviron. Eng. 139 [12], 2201-2211. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000959

Kavazanjian, E.; Hamdan, N. (2015) Enzyme Induced Carbonate Precipitation (EICP) columns for ground improvement. In: IFCEE 2015, American Society of Civil Engineers, Reston, VA, USA, pp. 2252-2261. https://doi.org/10.1061/9780784479087.209

Neupane, D.; Yasuhara, H.; Kinoshita, N.; Ando, Y. (2015) Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique. Soils. Found. 55 [2], 447-457. https://doi.org/10.1016/j.sandf.2015.02.018

Neupane, D.; Yasuhara, H.; Kinoshita, N.; Putra, H. (2015b) Distribution of grout material within 1-m sand column in in situ calcite precipitation technique. Soils. Found. 55 [6], 1512-1518. https://doi.org/10.1016/j.sandf.2015.10.015

Oliveira, P.J.V.; Freitas, L.D.; Carmona, J.P. (2016) Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement. J. Mater. Civ. Eng. 29 [4], 04016263. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804

Almajed, A.; Tirkolaei, H.K.; Kavazanjian, E. (2018) Baseline investigation on enzyme-induced calcium carbonate precipitation. J. Geotech. Geoenviron. Eng. 144 [11], 04018081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001973

Song, J.Y.; Ha, S.J.; Jang, J.W.; Yun, T.S. (2020) Analysis of improved shear stiffness and strength for sandy soils treated by EICP. Journal of the Korean Geotechnical Society. 36 [1], 17-28.

Lee, S.; Kim, J. (2020) An experimental study on enzymatic induced carbonate precipitation using yellow soybeans for soil stabilization. KSCE J. Civ. Eng. 24 [7], 2026-2037. https://doi.org/10.1007/s12205-020-1659-9

Dilrukshim, R.A.N.; Nakashima, K.; Kawasaki, S. (2018) Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soils. Found. 58 [4], 894-910. https://doi.org/10.1016/j.sandf.2018.04.003

Gao, Y.; He, J.; Tang, X.; Chu, J. (2019) Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil. Soils. Found. 59 [5], 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014

Imran, M.A.; Nakashma, K.; Kawasaki, S. (2021) Bio-mediated soil improvement using plant derived enzyme in addition to magnesium ion. Crystals. 11 [5], 516. https://doi.org/10.3390/cryst11050516

Putra, H.; Simatupangm, M.; Yanto, D.H.Y. (2021) Improvement of organic soil shear strength through calcite precipitation method using soybeans as bio-catalyst. Crystals. 11 [9], 1044. https://doi.org/10.3390/cryst11091044

Khodadadi, H.T.; Kavazanjian, E.; van Paassen, L.; Dejong, J. (2017) Bio-grout materials: a review. Grouting 2017, July, Honolulu, HI, USA. 9-12.

Putra, H.; Yasuhara, H.; Kinoshita, N. (2017) Applicability of natural zeolite for NH-forms removal in enzyme-mediated calcite precipitation technique. Geosciences. 7 [3], 61. https://doi.org/10.3390/geosciences7030061

Keykha, H.A.; Mohamadzadeh, H.; Asadi, A.; Kawasaki, S. (2018) Ammonium-free carbonate-producing bacteria as an ecofriendly soil biostabilizer. Geotech. Test. J. 42 [1], 19-29. https://doi.org/10.1520/GTJ20170353

Zhao, Y.P.; Gao, T.Y.; Jiang, S.Y.; Cao, D.W. (2004) Ammonium removal by modified zeolite from municipal wastewater. J. Environ. Sci. 16 [6], 1001-1004.

Ji, Z.Y.; Yuan, J.S.; Li, X.G. (2007) Removal of ammonium from wastewater using calcium form clinoptilolite. J. Hazard. Mater. 141 [3], 483-488. https://doi.org/10.1016/j.jhazmat.2006.07.010 PMid:17007999

Almajed, A.; Tirkolaei, H.K.; Kavazanjian, E.; Hamdan, N. (2019) Enzyme induced biocementated sand with high strength at low carbonate content. Sci. Rep. 9 [1], 1-7. https://doi.org/10.1038/s41598-018-38361-1 PMid:30718723 PMCid:PMC6362242

Mohsenzadeh, A.; Aflaki, E.; Gowthaman, S.; Nakashma, K.; Kawasaki, S.; Ebadi, T. (2022) A two-stage treatment process for the management of produced ammonium by-products in ureolytic bio-cementation process. Int. J. Environ. Sci. Technol. 19 [1], 449-462. https://doi.org/10.1007/s13762-021-03138-z

Querol, X.; Moreno, N.; Umaña, J.T.; Alastuey, A.; Hernández, E.; Lopez-Soler, A.; Plana, F. (2002) Synthesis of zeolites from coal fly ash: an overview. Int. J. Coal. Geol. 50 [1-4], 413-423. https://doi.org/10.1016/S0166-5162(02)00124-6

Ryu, T.G.; Ryu, J.C.; Choi, C.H.; Kim, C.G.; Yoo, S.J.; Yang, H.S.; Kim, Y.H. (2006) Preparation of Na-P1 zeolite with high cation exchange capacity from coal fly ash. J. Ind. Eng. Chem. 12 [3], 401-407. Retrieved from https://www.cheric.org/PDF/JIEC/IE12/IE12-3-0401.pdf.

ASTM D2487 (2000) Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487, ASTM International, West Conshohocken, PA, USA.

ASTM D2166 (2005) Standard test method for unconfined compressive strength of cohesive soils. ASTM D2166, ASTM International, West Conshohocken, PA, USA.

Published

2023-04-28

How to Cite

Lee, S., & Kim, J. (2023). Enzyme-induced carbonate precipitation utilizing synthetic Ca2+-zeolite for low ammonium. Materiales De Construcción, 73(350), e315. https://doi.org/10.3989/mc.2023.302522

Issue

Section

Research Articles

Funding data

National Research Foundation of Korea
Grant numbers 2022R1F1A1065337