β-CaSiO3 and colloidal n-SiO2 based blended cement composites- their properties, regression analysis and micro-characterization studies
DOI:
https://doi.org/10.3989/mc.2023.304722Keywords:
Pozzolans, Regression analysis, Mechanical properties, Durability, FESEMAbstract
This paper examines the effect on mechanical properties such as compressive strength, flexural strength, and dynamic modulus of elasticity (DYE) of different proportions of wollastonite (β-CaSiO3) and colloidal nano-silica (n-SiO2) partially replacing cement. Durability indicators (water absorption, sorptivity and sulphate treatment test) were also examined to ascertain the quality of hardened paste mixes with respect to the control mix. The regression models were found for mechanical properties using different parameters from the results obtained, and statistical relations were established and validated. Regression analysis shows the significance of every parameter considered and model for the prediction of mechanical strengths. Finally, the results were substantiated by the microstructural characterization by FESEM. β-CaSiO3 and colloidal n-SiO2 replaced cement by 15%, and 1.5%-6% with an offset of 1.5%, respectively at low (0.25), medium (0.40) and high (0.55) water/binder (w/b) ratio. FESEM micrographs showed dense Calcium-silicate-hydrate (CSH) gel and stratlingite (CASH) was formed by blended cement paste mixes containing β-CaSiO3 and n-SiO2. n-SiO2 at 3% and CaSiO3 at 15% replacements of cement (NS3 mix) was the optimum replacement level for the cement paste mix. Analysed regression model suggests that the models and parameters were found significant and can also be used for prediction (based on R2 values and p-value).
Downloads
References
Kalla, P.; Rana, A.; Chad, Y.B.; Misra, A.; Csetenyi, L. (2015) Durability studies on concrete containing wollastonite. J. Clean. Prod. 87, 726-734. https://doi.org/10.1016/j.jclepro.2014.10.038
Yang, K.H.; Jung, Y.B.; Cho, M.S.; Tae, S.H. (2015) Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018
Kalla, P.; Misra, A.; Gupta, R.C.; Csetenyi, L.; Gahlot, V.; Arora, A. (2013) Mechanical and durability studies on concrete containing wollastonite-fly ash combination. Constr. Build. Mater. 40, 1142-1150. https://doi.org/10.1016/j.conbuildmat.2012.09.102
Nair, N.A.; Sairam, V. (2021) Research initiatives on the influence of wollastonite in cement-based construction material- A review. J. Clean. Prod. 283, 124665. https://doi.org/10.1016/j.jclepro.2020.124665
Ransinchung, G.D.; Kumar, B. (2010) Investigations on pastes and mortars of ordinary portland cement admixed with wollastonite and microsilica. J. Mater. Civ. Eng. 22, 305-313. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000019
Soliman, A.M.; Nehdi, M.L. (2012) Effect of natural wollastonite microfibers on early-age behavior of UHPC. J. Mater. Civ. Eng. 24, 816-824. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000473
Abhilash, P.P.; Nayak, D.K.; Sangoju, B.; Kumar, R.; Kumar, V. (2021) Effect of nano-silica in concrete; a review. Constr. Build. Mater. 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347
Sobolev, K.; Gutiérrez, M.F. (2005) How nanotechnology can change the concrete world. Am. Ceram. Soc. Bull. 84, 14-18.
Niu, Y.M.; Zhu, X.L.; Chang, B.; Tong, Z.H.; Cao, W.; Qiao, P.H.; Zhang, Lin-Yuan; Zhao, J.; Song, Y.G. (2016) Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity. BioMed Res. Int. 2016, 1-7. https://doi.org/10.1155/2016/9353275 PMid:26981538 PMCid:PMC4770131
Jo, B.W.; Kim, C.H.; Lim, J.H. (2007) Investigations on the development of powder concrete with nano-SiO2 particles. KSCE J. Civ. Eng. 11, 37-42. https://doi.org/10.1007/BF02823370
Sharma, S.K. (2019) Properties of SCC containing pozzolans, Wollastonite micro fiber, and recycled aggregates. Heliyon 5, 1-12. https://doi.org/10.1016/j.heliyon.2019.e02081 PMid:31453389 PMCid:PMC6702352
Peris Mora, E. (2007) Life cycle, sustainability and the transcendent quality of building materials. Build. Environ. 42 [3], 1329-1334. https://doi.org/10.1016/j.buildenv.2005.11.004
Huang, H.; Guo, R.; Wang, T.; Hu, X.; Garcia, S.; Fang, M.; Luo, Z.; Maroto-Valer, M.M. (2019) Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration potential and feasibility assessment. J. Clean. Prod. 211, 830-841. https://doi.org/10.1016/j.jclepro.2018.11.215
Low, N.M.P.; Beaudoin, J.J. (1993) The effect of wollastonite micro-fibre aspect ratio on reinforcement of Portland cement-based binders. Cem. Concr. Res. 23 [6], 1467-1479. https://doi.org/10.1016/0008-8846(93)90083-L
Low, N.M.P.; Beaudoin, J.J. (1994) Mechanical properties and microstructure of high alumina cement-based binders reinforced with natural wollastonite micro-fibres. Cem. Concr. Res. 24 [4], 650-660. https://doi.org/10.1016/0008-8846(94)90189-9
Low, N.M.P.; Beaudoin, J.J. (1994) The flexural toughness and ductility of portland cement-based binders reinforced with wollastonite micro-fibres. Cem. Concr. Res. 24 [2], 250-258. https://doi.org/10.1016/0008-8846(94)90050-7
Sobolev, K.; Flores, I.; Hermosillo, R.; Torres-Martínez, L.M. (2008) Nanomaterials and nanotechnology for high-performance cement composites. Am. Concr. Institute, ACI Spec. Publ. SP-254, 91-118.
Heidari, A.; Tavakoli, D. (2013) A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles. Constr. Build. Mater. 38, 255-264. https://doi.org/10.1016/j.conbuildmat.2012.07.110
Aggarwal, Y.; Siddique, R. (2014) Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr. Build. Mater. 54, 210-223. https://doi.org/10.1016/j.conbuildmat.2013.12.051
Ji, T. (2005) Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2Cem. Concr. Res. 35 [10], 1943-1947. https://doi.org/10.1016/j.cemconres.2005.07.004
Said, A.M.; Zeidan, M.S.; Bassuoni, M.T.; Tian, Y. (2012) Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
Naji Givi, A.; Abdul Rashid, S.; Aziz, F.N.A.; Salleh, M.A.M. (2010) Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Compos. Part B: Eng. 41 [8], 673-677. https://doi.org/10.1016/j.compositesb.2010.08.003
ASTM C618-19 (2019) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annu. B. ASTM Stand. 2019, 1-4.
IS 12269 (2013) Ordinary portland cement - 53 grade specification, Indian Stand. 2013, 1-14.
ASTM C305 (2014) Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency. Annu. B. ASTM Stand. 2014, 1-3.
Bolhassani, M.; Samani, M. (2015) Effect of type, size, and dosage of nanosilica and microsilica on properties of cement paste and mortar. ACI Mater J. 112, 259-266. https://doi.org/10.14359/51686995
IS 516- Part 11 (2020) Hardened concrete - methods of test. Indian Stand. 2020, 1-8.
Hall, C. (1989) Water sorptivity of mortars and concretes: a review. Mag. Concr. Res. 41 [147], 51-61. https://doi.org/10.1680/macr.1989.41.147.51
ASTM C1585 (2013) Standard test method for measurement of rate of absorption of water by hydraulic cement concretes. Annu. B. ASTM Stand. 41, 1-6.
Larbi, J.A. (1993) Microstructure of the interracial zone around aggregate particles in concrete. Heron 38, 1-69. Retrieved from https://heronjournal.nl/38-1/1.pdf.
Neville, A. (2004) The confused world of sulfate attack on concrete. Cem. Concr. Res. 34 [8], 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004
Clifton, J.R.; Frohnsdorff, G.; Ferraris, C. (1998) Standards for evaluating susceptibility of cement based materials to External Sulphate Attack. Am. Ceram. Soc. Special Volume, 337-355. Retrieved from https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860169
Thaulow, N.; Sahu, S. (2004) Mechanism of concrete deterioration due to salt crystallization. Mat. Charact. 53, 123-127. https://doi.org/10.1016/j.matchar.2004.08.013
Min, D.; Mingshu, T. (1994) Formation and expansion of ettringite crystals. Cem. Concr. Res. 24 [1], 119-126. https://doi.org/10.1016/0008-8846(94)90092-2
Fathima Suma, M.; Santhanam, M.; Rahul, A. V. (2020) The effect of specimen size on deterioration due to external sodium sulphate attack in full immersion studies. Cem. Concr. Compos. 114, 103806. https://doi.org/10.1016/j.cemconcomp.2020.103806
Mehta, P.K. (1976) Scanning electron micrographic studies of ettringite formation. Cem. Concr. Res. 6 [2], 169-182. https://doi.org/10.1016/0008-8846(76)90115-0
Sharma, U.; Singh, L.P.; Ali, D.; Poon, C.S. (2019) Effect of particle size of silica nanoparticles on hydration reactivity and microstructure of C-S-H gel. Adv. Civ. Eng. Mater. 8, 346-360. https://doi.org/10.1520/ACEM20190007
Hewlett, P.C. (2004) Lea's chemistry of cement and concrete. 2nd ed., Elsevier Science & Technology Books, Amsterdam, (2004).
Chithra, S.; Senthil Kumar, S.R.R.; Chinnaraju, K. (2016) The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate. Constr. Build. Mater. 113, 794-804. https://doi.org/10.1016/j.conbuildmat.2016.03.119
Neville, A.M.; Brooks J.J. (2010) Concrete technology. Pearson education limited, Essex, (2010).
Bentz, D.P.; Sant, G.; Weiss, J. (2008) Early-age properties of cement-based materials. I: influence of cement fineness. J. Mater. Civ. Eng. 20, 502-508. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:7(502)
Levasil, C.B. (2019) Strong constructions that last saving resources by improving performance. Nouryon Ltd., Sweden, (2019).
Montgomery, D.C. (2001) Design and analysis of experiments. 5 ed., John Wiley & Sons, Inc. New York, (2001).
Rahimzadeh, C.Y.; Salih, A.; Barzinjy, A.A. (2022) Systematic multiscale models to predict the compressive strength of cement paste as a function of microsilica and nanosilica contents, water/cement ratio, and curing ages. Sustain. 14 [3], 1-23. https://doi.org/10.3390/su14031723
Dahasahastra, A.V.; Balasundaram, K.; Latkar, M.V. (2022) Hydrometallurgy Turbidity removal from synthetic turbid water using coagulant recovered from water treatment sludge: A potential method to recycle and conserve aluminium. Hydrometallurgy. 213, 105939. https://doi.org/10.1016/j.hydromet.2022.105939
Mohammed, A.; Mahmood, W.; Ghafor, K. (2020) TGA, rheological properties with maximum shear stress and compressive strength of cement-based grout modified with polycarboxylate polymers. Constr. Build. Mater. 235, 117534. https://doi.org/10.1016/j.conbuildmat.2019.117534
Zain, M.F.M.; Abd, S.M. (2009) Multiple regression model for compressive strength prediction of high performance concrete. J. App. Sci. 9 [1], 155-160. https://doi.org/10.3923/jas.2009.155.160
Neville, A.M. (2011) Properties of concrete. 5th Ed., Pearson Education Limited, England, (2011).
ASTM C642 (2013) Standard test method for density, absorption, and voids in hardened concrete. Annu. B. ASTM Stand. 2013, 1-3.
Jindal, A.; Ransinchung R.N., G.D.; Kumar, P. (2019) Behavioral study of self-compacting concrete with wollastonite microfiber as part replacement of sand for pavement quality concrete (PQC). Int. J. Transp. Sci. Technol. 9 [2], 170-181. https://doi.org/10.1016/j.ijtst.2019.06.002
Sakai, E.; Kasuga, T.; Sugiyama, T.; Asaga, K.; Daimon, M. (2006) Influence of superplasticizers on the hydration of cement and the pore structure of hardened cement. Cem. Concr. Res. 36 [11], 2049-2053. https://doi.org/10.1016/j.cemconres.2006.08.003
Du, H.; Pang, S.D. (2019) High performance cement composites with colloidal nano-silica. Constr. Build. Mater. 224, 317-325. https://doi.org/10.1016/j.conbuildmat.2019.07.045
Yang, L.; Gao, D.; Zhang, Y.; Tang, J.; Li, Y. (2019) Relationship between sorptivity and capillary coefficient for water absorption of cement-based materials: Theory analysis and experiment. R. Soc. Open Sci. 6, 1-12. https://doi.org/10.1098/rsos.190112 PMid:31312483 PMCid:PMC6599806
Pimraksa, K.; Chindaprasirt, P. (2018) Sulfoaluminate cement-based concrete. Eco-efficient Repair Rehabil. Concr. Infrastruc. 1, 355-385 https://doi.org/10.1016/B978-0-08-102181-1.00014-9
Yuan, Q.; Liu, Z.; Zheng, K.; Ma, C. (2021) Civil Engineering Materials. 1st Ed., Woodhead Publishing Series, Cambridge, (2021).
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.