A mini guideline study for fly ash-based alkali activated foam masonry units





Foam Geopolymer, Experimental Design, SPSS, Masonry Unit


This study examined the preparation of fly ash-based foam geopolymer recipes with the experimental design method and data analysis with the SPSS program. A total of 54 prescriptions were used in the studies, which investigated six different variables. Strength, density, and thermal conductivity analyses were performed. Values were in the range of 0.57-2.75 MPa for strength, 344-592 kg/m3 for density, and 0.089-0.132 for thermal conductivity. Three variables were identified with each having the most significant effect on strength and density values. H2O2, curing temperature, and expanded perlite had the most effect on strength, while H2O2, curing temperature, and alkali concentration had the most significant effect on density. Most influential parameters are plotted on ternary graphs to ensure that the foam concrete (CLC) masonry units used in all types of masonry walls, whether load-bearing or not, can operate under the specified performance conditions.


Download data is not yet available.


Vairagade, V.S.; Parbat, K.; Dhale, S.A. (2015) Fly ash as sustainable material for green concrete - A state of art. Int. J. Res. Eng. Sci. Technol. 1 [2] , 17-24.

Dean, B.; Dulac, J.; Petrichenko, K.; Graham P. (2016) Towards a zero-emission, efficient, and resilient buildings and construction sector. Global Status Report. 1-48.

Jaya, N.A.; Yun-Ming, L.; Cheng-Yong H.; Abdullah, M.M.AB.; Hussin K. (2020) Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Construc. Build. Mater. 247, 118641. https://doi.org/10.1016/j.conbuildmat.2020.118641

Rifaai, Y.; Yahia, A.; Mostafa, A.; Aggoun, S.; Kadri, E.H. (2019) Rheology of fly ash-based geopolymer: Effect of NaOH concentration. Construc. Build. Mater. 223, 583-94. https://doi.org/10.1016/j.conbuildmat.2019.07.028

Cai, J.; Tan, J.; Li, X. (2020) Thermoelectric behaviors of fly ash and metakaolin based geopolymer. Construc. Build. Mater. 237, 117757. https://doi.org/10.1016/j.conbuildmat.2019.117757

Singh, N.B.; Middendorf, B. (2020) Geopolymers as an alternative to Portland cement: An overview. Construc. Build. Mater. 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455

Ling, Y.; Wang, K.; Wang, X.; Hua, S. (2019) Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer. Construc. Build. Mater. 228, 116763. https://doi.org/10.1016/j.conbuildmat.2019.116763

Wu, J.; Zhang, Z.; Zhang, Y.; Li, D. (2018) Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends. Construc. Build. Mater. 168, 771-779. https://doi.org/10.1016/j.conbuildmat.2018.02.097

Živica, V.; Palou, M.T.; Križma, M. (2015) Geopolymer cements and their properties: A review. Build. Res. J. 61 [2] , 85-100. https://doi.org/10.2478/brj-2014-0007

Singh, N.B. (2018) Foamed geopolymer concrete. Mater. Today Proc. 5 [7] , 15243-15252. https://doi.org/10.1016/j.matpr.2018.05.002

Srividya, T.; Kannan, P.R.; Sivasakthi, M.; Sujitha, A.; Jeyalakshmi, R. (2022) A state-of-the-art on development of geopolymer concrete and its field applications. Case Stud. Construc. Mater. 16, e00812. https://doi.org/10.1016/j.cscm.2021.e00812

Rashidi, S.; Esfahani, J.A.; Karimi, N. (2018) Porous materials in building energy technologies-A review of the applications, modelling and experiments. Renew. Sustain. Energy Rev. 91, 229-247. https://doi.org/10.1016/j.rser.2018.03.092

Glasby, T.; Day, J.; Genrich, R.; Kemp, M. (2015) Commercial scale geopolymer concrete construction. The Saudi International Building and Constructions Technology Conference 1-11.

Dong, M.; Feng, W.; Elchalakani, M.; Li, G.K.; Karrech, A.; Sheikh, M.N. (2020) Material and glass-fibre-reinforced polymer bond properties of geopolymer concrete. Mag. Concr. Res. 72 [10] , 509-525. https://doi.org/10.1680/jmacr.18.00273

Aziz, I.H.; Al Bakri Abdullah, M.M.; Heah, C.Y.; Liew, Y.M. (2020) Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature. Adv. Cem. Res. 32 [10] , 465-475. https://doi.org/10.1680/jadcr.18.00162

Kalaiyarrasi, A.R.R.; Partheeban, P. (2019) Mechanical and microstructural properties of metakaolin geopolymer. Emerg. Mater. Res. 8 [2] , 275-282. https://doi.org/10.1680/jemmr.17.00019

Zhang, J.; Li, S.; Li, Z.; Gao, Y.; Liu, C.; Qi, Y. (2021) Workability and microstructural properties of red-mud-based geopolymer with different particle sizes. Adv. Cem. Res. 33 [5] , 210-223. https://doi.org/10.1680/jadcr.19.00085

Dadsetan, S.; Siad, H.; Lachemi, M.; Sahmaran, M. (2019) Construction and demolition waste in geopolymer concrete technology: A review. Mag. Concr. Res. 71 [23] , 1232-1352. https://doi.org/10.1680/jmacr.18.00307

Davidovits, J. (2008) Geopolymer chemistry and applications. Institut Géopolymère, Saint-Quentin, (2008).

Giannopoulou, I.; Panias, D. (2007) Structure, design and applications of geopolymeric materials. Conference: 3rd Int. Conf. on Def. Pro. and Str. of Mat. 5-15.

Provis, J.L.; Deventer, S.J. (2014) Alkali activated materials state-of-the-art report, RILEM Melbourne, Australia, (2014). https://doi.org/10.1007/978-94-007-7672-2

Abdollahnejad, Z. (2016) Development of foam one-part geopolymersUniversidade do Minho, Portugal, (2016).

Lemougna, P.N.; Wang, K-t.; Tang, Q.; Melo, U.C.; Cui, X-m. (2016) Recent developments on inorganic polymers synthesis and applications. Ceram. Int. 42 [14] , 15142-15159. https://doi.org/10.1016/j.ceramint.2016.07.027

Provis, J.L.; Van Deventer, J.S.J. (2009) Geopolymers : structure, processing, properties and industrial applications. Woodhead Publishing, Cambridge, (2009).

Pacheco-torgal, F.; Lourenȯ, P.B.; Labrincha, J.A.; Kumar, S. (2014) Eco-efficient masonry bricks and blocks design, properties and durability. Woodhead Publishing, UK, (2014). https://doi.org/10.1016/B978-1-78242-305-8.00001-2 PMid:25842101

Ahmari, S.; Zhang, L. (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construc. Build. Mater. 29, 323-331. https://doi.org/10.1016/j.conbuildmat.2011.10.048

Schneider, M.; Romer, M.; Tschudin, M.; Bolio H. (2011) Sustainable cement production-present and future. Cem. Concr. Res. 41 [7] , 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019

Ahmed, H.U.; Mohammed, A.A.; Rafiq, S.; Mohammed, A.S.; Mosavi A.; Sor N.H.; Qaidi, S.M.A. (2021) Compressive strength of sustainable geopolymer concrete composites: A state-of-the-art review. Sustain. 13 [24] , 13502. https://doi.org/10.3390/su132413502

Luhar, I.; Luhar, S.; Abdullah, M.M.A.B.; Razak, R.A.; Vizureanu, P.; Sandu, A.V.; Matasaru, P-D. (2021) A state-of-the-art review on innovative geopolymer composites designed for water and wastewater treatment. Materials. 14 [23] , 7456. https://doi.org/10.3390/ma14237456 PMid:34885611 PMCid:PMC8658912

Ghisellini, P.; Ripa, M.; Ulgiati, S. (2017) Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean Product. 178, 618-643. https://doi.org/10.1016/j.jclepro.2017.11.207

Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. (2021) Potential applications of geopolymer concrete in construction: A review. Case Studies Constuc. Mater. 15, e00733. https://doi.org/10.1016/j.cscm.2021.e00733

Malhotra, M.V. (2002) Introduction: sustainable development and concrete technology. ACI Conc. Int. 24 [7] , 22.

Asadi, I.; Shafigh, P.; Abu Hassan, Z.F.B.; Mahyuddin, N.B. (2018) Thermal conductivity of concrete - A review. J. Build. Eng. 20, 81-93. https://doi.org/10.1016/j.jobe.2018.07.002

Yatsenko, E.A.; Goltsman, B.M.; Smoliy, V.A.; Kosarev A.S. (2016) Investigation of a porous structure formation mechanism of a foamed slag glass based on the glycerol foaming mixture. Res. J. Phar, Bio. Chem. Sci. 7 [5] , 1073-1081.

Abdollahnejad, Z.; Pacheco-Torgal, F.; de Aguiar, J.B. (2015) Development of foam one-part geopolymers with enhanced thermal insulation performance and low carbon dioxide emissions. Adv. Mat. Res. 1129, 565-572. https://doi.org/10.4028/www.scientific.net/AMR.1129.565

Pacheco-Torgal, F. (2014) Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Construc. Build. Mater. 51, 151-162. https://doi.org/10.1016/j.conbuildmat.2013.10.058

Bicer, A.; Kar, F. (2017) Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Ther. Sci. Eng. Prog. 1, 59-65. https://doi.org/10.1016/j.tsep.2017.02.008

Singh, B.; Gupta, M.; Chauhan, M.; Bhattacharyya, S.K. (2020) Lightweight geopolymer concrete with EPS beads. IOP Conf. Series. Mater. Sci. Engineer. 869, 032048. https://doi.org/10.1088/1757-899X/869/3/032048

Zhao, Y.; Jow, J.; Cai, X.; Lai, S. (2015) Fly ash-based geopolymer foam technology for thermal insulation and fire protection applications. World of Coal Ash (WOCA) Conference.

Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. (2014) Geopolymer foam concrete: An emerging material for sustainable construction. Construc. Build. Mater. 56, 113-127. https://doi.org/10.1016/j.conbuildmat.2014.01.081

Pacheco-Torgal, F.; Jalali, S.; Fucic, A. (2012) Toxicity of building materials. Woodhead Publishing, USA, (2012). https://doi.org/10.1533/9780857096357

Samson, G.; Cyr, M. (2017) Porous structure optimisation of flash-calcined metakaolin / fly ash geopolymer foam concrete geopolymer foam concrete. Eur. J. Env. Civil Eng. 22 [12] , 1482-1498. https://doi.org/10.1080/19648189.2017.1304285

Novais, R.M.; Pullar, R.C.; Labrincha, J.A. (2019) Geopolymer foams: An overview of recent advancements. Progress Mat. Sci. 109, 100621. https://doi.org/10.1016/j.pmatsci.2019.100621

Yang, T.; Chou, C.; Chien, C. (2012) The effects of foaming agents and modifiers on a foamed-geopolymer. Adv. Civil. Env. Mat. Res. 905-914.

Bajare, D.; Vitola, L.; Dembovska, L.; Bumanis, G. (2019) Waste stream porous alkali activated materials for high temperature application. Front. Mat. 22 [6] , 1-13. https://doi.org/10.3389/fmats.2019.00092

Azimi, E.A.; Al Bakri Abdullah, M.M.; Ming, L.Y.; Yong, H.C.; Hussin, K.; Aziz, I.H. (2015) Review of geopolymer materials for thermal insulating applications. Key Eng. Mater. 660, 17-22. https://doi.org/10.4028/www.scientific.net/KEM.660.17

Mattila, H. (2017) Moisture behavior of building insulation materials and good building practices. Conference: Rakennusfysiikka 2017 - Building Physics.

Vandanapu, S.N.; Krishnamurthy, M. (2018) Seismic performance of lightweight concrete structures. Adv. Civil Eng. 2018, 2105784. https://doi.org/10.1155/2018/2105784

Vaou, V.; Panias, D. (2010) Thermal insulating foamy geopolymers from perlite. Minerals Eng. 23 [14] , 1146-1151. https://doi.org/10.1016/j.mineng.2010.07.015

Novais, R.M.; Buruberri, L.H.; Ascensão, G.; Seabra, M.P.; Labrincha, J.A. (2016) Porous biomass fly ash-based geopolymers with tailored thermal conductivity. J. Clean Prod. 119, 99-107. https://doi.org/10.1016/j.jclepro.2016.01.083

Korat, L.; Ducman, V. (2017) The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams. Cem. Conc. Comp. 80, 168-174. https://doi.org/10.1016/j.cemconcomp.2017.03.010

Cilla, M.S.; Morelli, M.R.; Colombo, P. (2014) Open cell geopolymer foams by a novel saponification/peroxide/gelcasting combined route. J. Europ. Ceram. Soc. 34 [12] , 3133-3137. https://doi.org/10.1016/j.jeurceramsoc.2014.04.001

Studart, A.R.; Gonzenbach, U.T.; Tervoort, E.; Gauckler, L.J. (2006) Processing routes to macroporous ceramics: A review. J. Am. Cer. Soc. 89 [6] , 1771-1789. https://doi.org/10.1111/j.1551-2916.2006.01044.x

Masi, G.; Rickard, W.D.A.; Vickers, L.; Bignozzi, M.C.; Van Riessen, A. (2014) A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram. Int. 40 [9] , 13891-13902. https://doi.org/10.1016/j.ceramint.2014.05.108

Medri, V.; Papa, E.; Dedecek, J.; Jirglova, H.; Benito, P.; Vaccari, A.; Landi, E. (2013) Effect of metallic Si addition on polymerization degree of in situ foamed alkali-aluminosilicates. Ceram. Int. 39 [7] , 7657-7668. https://doi.org/10.1016/j.ceramint.2013.02.104

Svingala, F.R. (2009) Alkali activated aerogels, Rochester Institute of Technology, Rochester (2009). https://doi.org/10.1002/9780470584262.ch30

Gonzenbach, U.T.; Studart, A.R.; Tervoort, E.; Gauckler, L.J. (2006) Stabilization of foams with inorganic colloidal particles. J. Am. Cer. Soc. 22 [26] , 10983-10988. https://doi.org/10.1021/la061825a PMid:17154574

Maryoto, A.; Setijadi, R.; Widyaningrum, A.; Waluyo, S. (2020) Drying shrinkage of concrete containing calcium stearate, (Ca(C18H35O2)2), with ordinary Portland cement (OPC) as a binder: Experimental and modelling studies. Molecules. 25 [21] , 4880. https://doi.org/10.3390/molecules25214880 PMid:33105714 PMCid:PMC7659964

Nemati, C.M.; Naseroleslami, R.; Shekarchi, M. (2019) The impact of calcium stearate on characteristics of concrete. Asian J. Civil Eng. 20, 1007-1020. https://doi.org/10.1007/s42107-019-00161-x

Maryoto, A. (2015) Improving microstructures of concrete using Ca(C18H35O2)2. Procedia Eng. 125, 631-637. https://doi.org/10.1016/j.proeng.2015.11.086

Kurtulus, C.; Baspınar, M.S. (2020) Effect of calcium stearate on the thermal conductivity of geopolymer foam. J. Turkish Chem. Soc. 7 [2] , 535-544.

Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P. (2021) Porous geopolymer composites: A review. Comp. Part A: App. Sci. Manufac. 150, 106629. https://doi.org/10.1016/j.compositesa.2021.106629

Demir, İ.; Baspınar, S.; Kahraman, E. (2018) Production of insulations and construction materials from expanded perlite. Lecture Notes Civil Eng. 6, 24-32. https://doi.org/10.1007/978-3-319-63709-9_3

Sriwattanapong, M.; Sinsiri, T.; Pantawee, S. (2013) A study of lightweight concrete admixed with perlite. Suranaree J. Sci. Technol. 20 [3] , 227-234.

Sengul, O.; Azizi, S.; Karaosmanoglu, F.; Tasdemir, M.A. (2011) Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete. Energy Build. 43 [2-3] , 671-676. https://doi.org/10.1016/j.enbuild.2010.11.008

Chandra, S.; Berntsson, L. (2002) Lightweight aggregate, Noyes Publications, New York, (2002).

Gunasekara, C.M. (2016) Influence of properties of fly ash from different sources on the mix design and performance of geopolymer concrete, Engineering and Health RMIT University, Australia, (2016).

Tchakouté, H.K.; Rüscher, C.H. (2017) Mechanical and microstructural properties of metakaolin-based geopolymer cements from sodium waterglass and phosphoric acid solution as hardeners: A comparative study. App. Clay Sci. 140, 81-87. https://doi.org/10.1016/j.clay.2017.02.002

De Vargas, A.S.; Dal Molin, D.C.C.; Vilela, A.C.F.; da Silva, F.J.; Pavão, B.; Veit, H. (2011) The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers. Cem. Conc. Comp. 33 [6] , 653-660. https://doi.org/10.1016/j.cemconcomp.2011.03.006

Medri, V.; Papa, E.; Mazzocchi, M.; Laghi, L.; Morganti, M.; Francisconi, J.; Landi, E. (2015) Production and characterization of lightweight vermiculite/geopolymer-based panels. Mater. Des. 85, 266-274. https://doi.org/10.1016/j.matdes.2015.06.145

Zhang, Z.; Wang, H. (2016) The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus. Front. Mat. 3, 38. https://doi.org/10.3389/fmats.2016.00038

Bai, C.; Colombo, P. (2017) High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram. Int. 43 [2] , 2267-2273. https://doi.org/10.1016/j.ceramint.2016.10.205

Cui, Y.; Wang, D.; Zhao, J.; Li, D.; Ng, S.; Rui, Y. (2018) Effect of calcium stearate based foam stabilizer on pore characteristics and thermal conductivity of geopolymer foam material. J. Build. Eng. 20, 21-29. https://doi.org/10.1016/j.jobe.2018.06.002

Bai, C.; Colombo, P. (2018) Processing, properties and applications of highly porous geopolymers : A review. Ceram. Int. 44 [14] , 16103-16118. https://doi.org/10.1016/j.ceramint.2018.05.219

Abdollahnejad, Z.; Nazari, A.; Pacheco-Torgal, F.; Sanjayan, J.G.; Barroso de Aguiar, J.L. (2015) Prediction of the compressive strength of one-part geopolymers. Int. Con.f Eng. 1226-1234.

Shill, S.K.; Al-Deen, S.; Ashraf, M.; Hutchison, W. (2020) Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Construc. Build. Mater. 239, 117886. https://doi.org/10.1016/j.conbuildmat.2019.117886

Kathirvel, P.; Kaliyaperumala, S.R.M. (2017) Probabilistic modeling of geopolymer concrete using response surface methodology. Comput. Concr. 19 [6] , 737-744.

Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; et al. (2007) Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta. 597 [2] , 179-186. https://doi.org/10.1016/j.aca.2007.07.011 PMid:17683728

Li, N.; Shi, C.; Zhang, Z.; Zhu, D.; Hwang, H.J.; Zhu, Y.; Sun, T. (2018) A mixture proportioning method for the development of performance-based alkali-activated slag-based concrete. Cem. Conc. Comp. 93, 163-174. https://doi.org/10.1016/j.cemconcomp.2018.07.009

Nazari, A.; Sanjayan, J.G. (2015) Hybrid effects of alumina and silica nanoparticles on water absorption of geopolymers: Application of Taguchi approach. Measurement. 60, 240-246. https://doi.org/10.1016/j.measurement.2014.10.004

Hadi, M.N.S.; Zhang, H.; Parkinson, S. (2019) Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability. J. Build. Eng. 23, 301-313. https://doi.org/10.1016/j.jobe.2019.02.006

Lokuge, W.; Wilson, A.; Gunasekara, C.; Law, D.W.; Setunge, S. (2018) Design of fly ash geopolymer concrete mix proportions using multivariate adaptive regression spline model. Construc. Build. Mater. 166, 472-81. https://doi.org/10.1016/j.conbuildmat.2018.01.175

Onoue, K.; Iwamoto, T.; Sagawa, Y. (2019) Optimization of the design parameters of fly ash-based geopolymer using the dynamic approach of the Taguchi method. Construc. Build. Mater. 219, 1-10. https://doi.org/10.1016/j.conbuildmat.2019.05.177

ASTM C618-03 (2003) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annu B ASTM Standard C, 3-6.

Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. (2018) One-part alkali-activated materials: A review. Cem. Conc. Res. 103, 21-34. https://doi.org/10.1016/j.cemconres.2017.10.001

Görhan, G.; Aslaner, R.; Şinik, O. (2016) The effect of curing on the properties of metakaolin and fly ash-based geopolymer paste. Compos. Part B. Eng. 97, 329-335. https://doi.org/10.1016/j.compositesb.2016.05.019

Izaguirre, A.; Lanas, J.; Álvarez, J.I. (2009) Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars Cem. Concr. Res. 39 [11] , 1095-1104. https://doi.org/10.1016/j.cemconres.2009.07.026


Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Cornelis, M.H.S.; Jumaat, M.Z. (2016) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Composites Sci. Tech. 122, 73-81. https://doi.org/10.1016/j.compscitech.2015.11.009

Abdollahnejad, Z.; Mastali, M.; Dalvand, A. (2017) Comparative study on the effects of recycled glass-fiber on drying shrinkage rate and mechanical properties of the self-compacting mortar and fly ash-slag geopolymer mortar. J. Mat. Civil Eng. 29 [8] , 1-11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001918

Ranjbar, N.; Zhang, M. (2020) Fiber-reinforced geopolymer composites : A review. Cem. Conc. Comp. 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498

Sukontasukkul, P.; Pongsopha, P.; Chindaprasirt, P.; Songpiriyakij, S. (2018) Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Construc. Build. Mater. 161, 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122

Mastali, M.; Kinnunen, P.; Dalvand, A.; Mohammadi Firouz, R.; Illikainen, M. (2018) Drying shrinkage in alkali-activated binders-A critical review. Construc. Build. Mater. 190, 533-550. https://doi.org/10.1016/j.conbuildmat.2018.09.125

Kheradmand, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. (2020) Drying shrinkage of fly ash geopolymeric mortars reinforced with polymer hybrid fibres. Proc. Inst. Civ. Eng. Constr. Mater. 173 [1] , 28-40.

Amran, Y.H.M.; Farzadnia, N.; Ali, A.A.A. (2015) Properties and applications of foamed concrete; a review. Construc. Build. Mater. 101 [1] , 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112

Jedidi, M.; Benjeddou, O.; Soussi, C. (2015) Effect of expanded perlite aggregate dosage on properties of lightweight concrete. Jordan J. of Civ. Eng. 9 [3] , 278-291. https://doi.org/10.14525/jjce.9.3.3071

Hardjito, D.; (2005) Development and properties of low-calcium fly ash-based geopolymer concrete, Curtin University of Technology, Australia, (2005).

Tsaousi, G.M.; Douni, I.; Panias, D. (2016) Characterization of the properties of perlite geopolymer pastes. Mater. Construcc. 66 [324] , e102. https://doi.org/10.3989/mc.2016.10415

ASTM C332-17 (2017) Standard specification for lightweight aggregates for insulating concrete.

ASTM C330 (2017) Standard specification for lightweight aggregates for structural concrete, Annual book of ASTM Standards.

Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J. Rangan, B.V. (2004) On the development of fly ash-based geopolymer concrete. Am. Conc. Instit. Mater. J. 101 [6] , 467-472.

Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. (2015) Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 65, 529-533. https://doi.org/10.1016/j.matdes.2014.09.024

Zhu, M.; Ji, R.; Li, Z.; Wang, H.; Liu, L.L.; Zhang, Z. (2016) Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Construc. Build. Mater. 112, 398-405. https://doi.org/10.1016/j.conbuildmat.2016.02.183

Jaya, N.A.; Yun-Ming, L.; Cheng-Yong, H.; Abdullah, M.M.A.B.; Hussin, K. (2020) Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Construc. Build. Mater. 247, 118641. https://doi.org/10.1016/j.conbuildmat.2020.118641

Sumirat, I.; Ando, Y.; Shimamura, S. (2006) Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. J. Porous Mater. 13, 439-443. https://doi.org/10.1007/s10934-006-8043-0

Skibinski, J.; Cwieka, K.; Ibrahim, S.H.; Wejrzanowski, T. (2019) Influence of pore size variation on thermal conductivity of open-porous foams. Materials. 12 [12] , 2017. https://doi.org/10.3390/ma12122017 PMid:31238492 PMCid:PMC6630399

Demirboǧa, R.; Gül, R. (2003) The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 33 [5] 723-727. https://doi.org/10.1016/S0008-8846(02)01032-3

Karaaslan, C.; Yener, E. (2021) The effect of alkaline activator components on the properties of fly ash added pumice based geopolymer. J. Inst. Sci. Technol. 11 [2] , 1255-1269. https://doi.org/10.21597/jist.840872

Jaya, N.A.; Yun-Ming, L.; Abdullah, M.M.A.B.; Cheng-Yong, H.; Hussin, K. (2018) Effect of sodium hydroxide molarity on physical, mechanical and thermal conductivity of metakaolin geopolymers. IOP Conf. Ser. Mater. Sci. Eng. 343, 012015. https://doi.org/10.1088/1757-899X/343/1/012015

Kadoi, K.; Nakae, H. (2011) Relationship between foam stabilization and physical properties of particles on aluminum foam production. Mater. Trans. 52 [10] , 1912-1919. https://doi.org/10.2320/matertrans.F-M2011817

Gu, G.; Xu, F.; Huang, X.; Ruan, S.; Peng, C.; Lin, J. (2020) Foamed geopolymer: The relationship between rheological properties of geopolymer paste and pore-formation mechanism. J. Clean Prod. 277, 123238. https://doi.org/10.1016/j.jclepro.2020.123238

Puertas, F.; Torres-Carrasco, M. (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem. Concr. Res. 57, 95-104. https://doi.org/10.1016/j.cemconres.2013.12.005

Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. (2016) Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Construc. Build. Mater. 114, 276-89. https://doi.org/10.1016/j.conbuildmat.2016.03.184

Monich, P.R.; Romero, A.R.; Höllen, D.; Bernardo, E. (2018) Porous glass-ceramics from alkali activation and sinter-crystallization of mixtures of waste glass and residues from plasma processing of municipal solid waste. J. Clean. Prod. 188, 871-878. https://doi.org/10.1016/j.jclepro.2018.03.167

Husain, S.; Permitaria, A.; Haryanti, N.H.; Suryajaya, S. (2019) Effect calcination temperature on formed of calcium silicate from rice husk ash and snail shell. J. Neutrino. J. Fisika dan Apl. 11 [2] , 45-51. https://doi.org/10.18860/neu.v11i2.6608

Abdulkareem, O.A. (2017) Effects of high activator content on fly ash-based geopolymers exposed to elevated temperatures. J. Mater. Appl. 6 [1] , 1-12.



How to Cite

Kurtulus, C. ., & Baspinar, M. . (2022). A mini guideline study for fly ash-based alkali activated foam masonry units. Materiales De Construcción, 72(348), e298. https://doi.org/10.3989/mc.2022.00422



Research Articles

Funding data

Afyon Kocatepe Üniversitesi
Grant numbers 19.Fen.Bil.01

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Grant numbers 218M778