Assessment of highway pavement concrete suffering from alkali-silica reaction: case study
DOI:
https://doi.org/10.3989/mc.2022.296922Keywords:
Alkali-silica reaction, Concrete, Aggregate, Petrographic analysis, MicrostructureAbstract
After 15 years of exploitation, numerous instances of damage to the concrete pavement motorway located in northern Germany were observed. Detailed macro and microscopic analysis and determination of mechanical properties were performed on the collected cores. It was found that cracks in the coarse and fine aggregate resulted from advanced alkali-silica reaction. No impact of de-icing agents on the destruction of the concrete pavement was found, while attention was paid to the potential intensification of concrete degradation resulting from the increase in traffic on motorways. The results obtained are a detailed supplement to the German research, as this region (Rostock) has not been analysed before.
Downloads
References
Stanton, T.E. (1940) Expansion of concrete through reaction between cement and aggregate; Proc. of the ASCE 66 (10), 1781-1811.
Pyy, H.; Holt, E.; Ferreira, M. (2011) An initial survey on the occurrence of alkali aggregate reaction in Finland, Customer Report VTT-CR-00554-12, pp. 27.
Menéndez, E. (2022) Special Issue, 2022 International Conference on Alkali-Aggregate Reaction in Concrete (16th ICAAR), Mater. Construcc 72 (346), ed023.
Frýbort, A.; Všianský, D.; Štulířová, J.; Stryk, J.; Gregerová, M. (2018) Variations in the composition and relations between alkali-silica gels and calcium silicate hydrates in highway concrete. Mater. Charact. 137, 91-108. https://doi.org/10.1016/j.matchar.2018.01.012
Muñoz, J.F.; Balachandran, Ch.; Arnold, T.S. (2021) Alkali-silica reactivity of aggregates from airfield pavements and its correlation with historic field performance. Int. Airfield Highway Pavem. 2021. https://doi.org/10.1061/9780784483527.012
Comi, C.; Fedele, R.; Perego, U. (2009) A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction. Mech. Mater. 41 [3], 210-230. https://doi.org/10.1016/j.mechmat.2008.10.010
Lahdensivu, J.; Köliö, A.; Husaini, D. (2018) Alkali-silica reaction in Southern-Finland's bridges. Case Stud. Constr. Mater. 8, 469-475. https://doi.org/10.1016/j.cscm.2018.03.006
Mielich, O. (2019) Alkali-silica reaction (ASR) on German motorways: an overview. Otto-Graf-J. 18, 197-208.
Wiedmann, A.; Weise, F.; Kotan, E.; Müller, H.S.; Meng, B. (2017) Effects of fatigue loading and alkali-silica reaction on the mechanical behavior of pavement concrete. Struct. Concr. 18, 539-549. https://doi.org/10.1002/suco.201600179
Jain, J.; Olek, J.; Janusz, A.; Jóźwiak-Niedźwiedzka, D. (2012) Effects of deicing salt solutions on physical properties of pavement concretes. Transp. Res. Recor. 2290 [1], 69-75 https://doi.org/10.3141/2290-09
Giebson, C.; Seyfarth, K.; Stark, J. (2010) Influence of acetate and formate-based deicers on ASR in airfield concrete pavements. Cem. Concr. Res. 40, 537-545. https://doi.org/10.1016/j.cemconres.2009.09.009
Balachandran, C; Olek, J.; Rangaraju, P.R.; Diamond, S. (2011) Role of potassium acetate deicer in accelerating alkali-silica reaction in concrete pavements: Relationship between laboratory and field studies. Transp. Res. Recor. 2240 [1], 70-79. https://doi.org/10.3141/2240-10
Marfil, S.A.; Maiza, P.J. (2001) Deteriorated pavements due to the alkali-silica reaction: A petrographic study of three cases in Argentina. Cem. Concr. Res. 31, 1017-1021.
Hong, S.H.; Han, S.H.; Yun, K.K. (2007) A case study of concrete pavement deterioration by alkali-silica reaction in Korea. Int. J. Concr. Struct. Mater. 1 [1], 75-81. https://doi.org/10.4334/IJCSM.2007.1.1.075
Glinicki, M.A.; Jóźwiak-Niedźwiedzka, D.; Antolik, A.; Dziedzic, K.; Dąbrowski, M.; Bogusz, K. (2022) Diagnosis of ASR damage in highway pavement after 15 years of service in wet-freeze climate region. Case Stud. Constr. Mater. 17, e01226. https://doi.org/10.1016/j.cscm.2022.e01226
Seyfarth, K.; Giebson, C.; Ludwig, H. (2022) ASR related service life estimation for concrete pavements. Mater. Construcc. 72 [346], e287. https://doi.org/10.3989/mc.2022.15921
DAfStb-Richtlinie, Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton, (Alkali-Richtlinie), Oktober 2013, pp. 48.
Villeneuve, V.; Fournier, B.; Duschene, J. (2012) Determination of the damage in concrete affected by ASR - The damage rating index (DRI). Proc. 14th ICAARAustin, USA
Bérubé, M-A.; Chouinard, D.; Pigeon, M.; Frenette, J.; Boisvert, L.; Rivest, M. (2002) Effectiveness of sealers in counteracting alkali-silica reaction in plain and air-entrained laboratory concretes exposed to wetting and drying, freezing and thawing, and salt water. Can. J. Civ. Eng. 29 [2], 289-300. https://doi.org/10.1139/l02-011
Sanchez, L.F.M.; Fournier, B.; Jolin, M.; Mitchell, D.; Bastien, J. (2017) Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures. Cem. Concr. Res. 93, 17-31. https://doi.org/10.1016/j.cemconres.2016.12.001
Fournier, B.; Fecteau, P.L.; Villeneuve, V.; Tremblay, S.; Sanchez, L. (2015) Description of petrographic features of damage in concrete used in the determination of the DRI. Québec: Département de géologie et de génie géologique, Université Laval.
Rostàsy, F.S. (1983) Baustoffe. Verlag W. Kohlhammer, Stuttgart - Berlin - Köln - Mainz. pp. 243.
Reinhardt, H-W; Mielich, O. (2012) Mechanical properties of concretes with slowly reacting alkali sensitive aggregates. Proc. 14th ICAAR, Austin, USA.
Bödeker, W. (2003) Alkalireaktion im Bauwerksbeton - Ein Erfahrungsbericht. Deutscher Ausschuß für Stahlbeton, Heft 539, Beuth Verlag GmbH, Berlin-Wien-Zürich, 1. Auflage.
Vola, G.; Berra, M.; Rondena, E. (2011) Petrographic quantitative analysis of ASR susceptible Italian aggregates for concrete. Proc. 13th Euroseminar on Microscopy Applied to Building Materials (EMABM 2011).
Jóźwiak-Niedźwiedzka, D.; Antolik, A.; Dziedzic, K.; Gméling, K.; Bogusz, K. (2021) Laboratory investigations on fine aggregates used for concrete pavements due to the risk of ASR. Road Mater. Pavem. Design. 22 [12], 2883-2895, https://doi.org/10.1080/14680629.2020.1796767
Fernandes, I.; Noronha, F.; Teles, M. (2004) Microscopic analysis of alkali-aggregate reaction products in a 50-year-old concrete. Mater. Charact. 53 [2-4], 295-306. https://doi.org/10.1016/j.matchar.2004.08.005
Bérubé, M.A.; Dorion, J.F.; Duchesne, J.; Fournier, B.; Vézina, D. (2003) Laboratory and field investigations of the influence of sodium chloride on alkali-silica reactivity. Cem. Concr. Res. 33, 77-84. https://doi.org/10.1016/S0008-8846(02)00926-2
Heisig, A.; Urbonas, L.; Beddoe, R.E.; Heinz, D. (2016) Ingress of NaCl in concrete with alkali reactive aggregate: effect on silicon solubility. Mater. Struct. 49, 4291-4303. https://doi.org/10.1617/s11527-015-0788-y
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.
Funding data
Narodowe Centrum Nauki
Grant numbers 2021/41/N/ST8/03799