Eco-efficient thermoacoustic panels made of totora and gypsum for sustainable rural housing ceilings

Authors

DOI:

https://doi.org/10.3989/mc.2023.346323

Keywords:

Thermal insulation, Plant fibers, Fiber panels, Sustainable materials, Rural housing

Abstract


The energy deficiency in rural housing in the Andes of Peru is recurrent. In this context, local and low environmental impact materials present an opportunity. This research evaluated the properties of five panels composed of totora and gypsum for ceiling applications. Firstly, the physical and durability properties were obtained. Then, impact and fire resistance were evaluated. Finally, thermoacoustic properties were assessed. The results showed a moisture level of 10.25%, water absorption of 354.85% which is considered high, and a dry density of 292.84 kg/m3. Adequate durability to fungus with resin on both sides. The panels’ fire resistance is superior to 60 minutes, with a safe impact criterion for 10 N and a functionality criterion for 5 N. The average values for the panels were 0.061 W/m·K for thermal insulation and 0.54 for NRC. Therefore, it is possible to produce an insulating material for thermoacoustic improvement.

Downloads

Download data is not yet available.

References

EM 110. (2014) Confort térmico y lumínico con eficiencia energética. Reglamento Nacional de edificaciones (RNE), Perú. Retrieved from: https://www.gob.pe/institucion/munisantamariadelmar/informes-publicaciones/2619729-em-110-confort-termico-y-luminico-con-eficiencia-energetica (Accessed: May 1, 2023).

Bernáldez, J.P.; Ruiz, M.V.L. (2016) Repercusiones de la pobreza sobre la salud de los individuos y las poblaciones. FMC Atención Primaria. 23 [2], 50-60. https://doi.org/10.1016/j.fmc.2015.04.010

UCL (2014) Local action on health inequalities: Fuel poverty and cold home-related health problems. Retrieved from: https://www.instituteofhealthequity.org/resources-reports/local-action-on-health-inequalities-fuel-poverty-and-cold-home-related-health-problems/read-the-report.pdf (Accessed: May 1, 2023).

DS 047. (2022) Plan multisectorial ante heladas y friaje 2022-2024. El peruano, Perú. Retrieved from: https://cdn.www.gob.pe/uploads/document/file/3066879/PMHF%202022-2024.pdf.pdf (Accessed: May 1, 2023).

Wieser, M.; Rodríguez-Larraín, S.; Onnis, S. (2021) Estrategias bioclimáticas para clima frío tropical de altura. Validación de prototipo de vivienda. Puno, Perú. Estoa. 10 [19], 9-19. https://doi.org/10.18537/est.v010.n019.a01

Jimenez, C.; Wieser, M.; Biondi, S. (2017) Improving thermal performance of traditional cabins in the high-altitude peruvian andean region. PLEA Conference. 4101-4108. Retrieved from: https://repositorio.pucp.edu.pe/index/handle/123456789/187754 (Accessed: May 1, 2023).

Pari, D.K. (2021) Estrategias bioclimáticas pasivas para el confort térmico en viviendas de interés social Mesoandinas - caso ciudad de Puno. M.Sc. Thesis, Universidade de Brasilia, Brasil.

Serra, R. (1999) Arquitectura y climas. Fourth ed., GG Básicos, Barcelona, España.

Jirón, P.; Toro, A.; Caquimbo, S.; Goldsack, L.; Martínez, L. (2004) Bienestar habitacional: guía de diseño para un hábitat residencial sustentable. First ed., Instituto de la Vivienda F.A.U, U. de Chile.

García A. (1983) Bases para el diseño solar pasivo: equipo de investigación de ahorro de energía en el edificio. First ed., Instituto Eduardo Torroja de la Construcción y del Cemento, Madrid, España.

Steffens, F.; Steffens, H.; Oliveira, F.R. (2017) Applications of natural fibers on architecture. Procedia Eng. 200, 317-324. https://doi.org/10.1016/j.proeng.2017.07.045

Balogun, O.A.; Daramola, O.O.; Adediran, A.A.; Akinwande, A.A.; Adesina, O.S.; Folorunsho, O.E.; Adetula, Y.V.; Kolawole, O.E. (2022) Development of sustainable polymeric materials for ceiling tiles application and optimization by digital logic method using thermal insulation properties as the functional requirement. Mater. Today Proc. 65 [3], 2254-2259. https://doi.org/10.1016/j.matpr.2022.07.092

Ninaquispe-Romero, L.; Weeks, S.; Huelman, P.H. (2012) Totora: A sustainable insulation material for the andean parts of Peru. PLEA Conference [Proceedings]. Retrieved from: https://plea-arch.org/ARCHIVE/websites/2012/files/T02-20120130-0067.pdf (Accessed: May 1, 2023).

Hidalgo-Cordero, J.F.; García-Navarro, J. (2018) Totora (Schoenoplectus californicus (C.A. Mey.) Soják) and its potential as a construction material. Ind. Crops Prod. 112, 467-480. https://doi.org/10.1016/j.indcrop.2017.12.029

Aza-Medina, L.C.; Palumbo, M.; Lacasta, A.M., González-Lezcano, R.A. (2023) Characterization of the thermal behavior, mechanical resistance, and reaction to fire of totora (Schoenoplectus californicus (C.A. Mey.) Sojak) panels and their potential use as a sustainable construction material. J. Build. Eng. 69, 105984. https://doi.org/10.1016/j.jobe.2023.105984

Hýsková, P.; Gaff, M.; Hidalgo-Cordero, J.F.; Hýsek, Š. (2020) Composite materials from totora (Schoenoplectus californicus. C.A. Mey, Sojak): Is it worth it? Compos. Struct. 232, 111572. https://doi.org/10.1016/j.compstruct.2019.111572

Ministerio del Ambiente. (2020) Plan maestro de la Reserva Nacional del Titicaca 2021-2025. SERNANP, Perú.

Loza-del Carpio, A.; Roque, B. (2022) Effect of prescribed burning on the nutritional value of aerial Schoenoplectus tatora stems, Lake Titicaca, Peru. Bioagro. 34 [3], 253-264. https://doi.org/10.51372/bioagro343.5

Molina-Fuertes, J.; Horn-Mutschler, M.; Gómez-León, M. (2017) Evaluación sistemática del desempeño térmico de un módulo experimental de vivienda alto andina para lograr el confort térmico con energía solar. Tecnia. 30 [1], 70-79. https://doi.org/10.21754/tecnia.v30i1.841

Goyzueta, G. (2009) Totorales del lago Titicaca importancia, conservación y gestión ambiental. First ed., Universidad Nacional del Altiplano de Puno, Perú.

Hidalgo-Cordero, J.F.; Aza-Medina, L.C. (2023) Analysis of the thermal performance of elements made with totora using different production processes. J. Build. Eng. 65, 105777. https://doi.org/10.1016/j.jobe.2022.105777

Jiménez, A.; Sathre, R.; García, J. (2016) Life cycle energy and material flow implications of gypsum plasterboard recycling in the European Union. Resour. Conserv. Recycl. 108, 171-181. https://doi.org/10.1016/j.resconrec.2016.01.014

Lushnikova, N.; Dvorkin, L. (2016) Sustainability of gypsum products as a construction material. Sustainability of Construction Materials, Second ed., Woodhead Publishing https://doi.org/10.1016/B978-0-08-100370-1.00025-1

Pedreño-Rojas, M.A.; Morales-Conde, M.J.; Pérez-Gálvez, F.; Rodríguez-Liñán, C. (2017) Eco-efficient acoustic and thermal conditioning using false ceiling plates made from plaster and wood waste. J. Clean. Prod. 166, 690-705. https://doi.org/10.1016/j.jclepro.2017.08.077

Abeysiriwardena, T.; Mahendran, M. (2022) Numerical modelling and fire testing of gypsum plasterboard sheathed cold-formed steel walls. Thin-Walled Struct. 180, 109792. https://doi.org/10.1016/j.tws.2022.109792

Guna, V.; Yadav, C.; Maithri, B.R.; Ilangovan, M.; Touchaleaume, F.; Saulnier, B.; Grohens, Y.; Reddy, N. (2021) Wool and coir fiber reinforced gypsum ceiling tiles with enhanced stability and acoustic and thermal resistance. J. Build. Eng. 41, 102433. https://doi.org/10.1016/j.jobe.2021.102433

Rodrigo-Bravo, A.; Cuenca-Romero, L.A.; Calderón, V.; Rodríguez, Á.; Gutiérrez-González, S. (2022) Comparative Life Cycle Assessment (LCA) between standard gypsum ceiling tile and polyurethane gypsum ceiling tile. Energy Build. 259, 111867. https://doi.org/10.1016/j.enbuild.2022.111867

Ghazi, K.; Hugi, E.; Wullschleger, L.; Frank, T. (2007) Gypsum board in fire - Modeling and experimental validation. J. Fire Sci. 25 [3], 267-282. https://doi.org/10.1177/0734904107072883

Cámara Chilena de la Construcción. (2011) Cielos falsos: rasos y modulares, recomendaciones técnicas. Second ed., Corporación de Desarrollo Tecnológico, Chile.

ASTM C127-15. (2015) Standard test method for relative density (specific gravity) and absorption of coarse aggregate. ASTM International, West Conshohocken, PA.

ASTM D 2017-05. (2005) Standard test method of accelerated laboratory test of natural decay resistance of woods (Withdrawn 2014) ASTM International, West Conshohocken, PA.

UNE-EN 350. (2017) Durabilidad de la madera y de los productos derivados de la madera. AENOR, Madrid.

DIN 4102-1. (1998) Fire behaviour of building materials and elements. DIN Deutsches Institut für Normung e.V., Berlin.

ASTM E 119-20. (2020) Standard test methods for fire tests of building construction and materials. ASTM International, West Conshohocken, PA.

EOTA TR 001. (2003) Determination of impact resistance of panels and panel assemblies. EOTA - European Organisation for Technical Assessment, Avenue des Arts 40 Kunstlaan, Brussels.

Ostachuk, A.; Di Paolo, L.; Orlando, U. (2000) Una manera simple de determinar la conductividad térmica de los materiales. Retrieved from: https://www.fisicarecreativa.com/informes/infor_termo/conduc_term.pdf (Accessed: May 1, 2023).

Gonzáles, H.A.; Salazar, E.G.; Cabrera, C.H. (2008) Cálculo del coeficiente de reducción de ruido (NRC), de materiales, utilizando una cámara de insonorización. Scien. Tech. 14 [38], 119-124. Retrieved from: https://www.redalyc.org/articulo.oa?id=84903821 (Accessed: May 1, 2023).

Corsino, B.; Boeger, M.R.T.; Maranho, L.T. (2013) Arquitetura do escapo de Schoenoplectus californicus (C.A. Mey.) Soják (Cyperaceae) Iher. Ser. Bot. 68 [1], 27-35. Retrieved from: https://isb.emnuvens.com.br/iheringia/article/view/36 (Accessed: May 1, 2023).

Thomas, R.; Sultan, M.; Latour, J. (2005) Impact of the variability of type X gypsum board. Fire and Materials Conference. 131-137. Retrieved from: https://nrc-publications.canada.ca/eng/view/accepted/?id=adf8ff33-6f92-49ea-8956-1c37f16b06f8 (Accessed: May 1, 2023).

Bousshine, S.; Ouakarrouch, M.; Bybi, A.; Laaroussi, N.; Garoum, M.; Tilioua, A. (2022) Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers. Appl. Acoust. 187, 108520. https://doi.org/10.1016/j.apacoust.2021.108520

Luamkanchanaphan, T.; Chotikaprakhan, S.; Jarusombati, S. (2012) A study of physical, mechanical and thermal properties for thermal insulation from narrow-leaved cattail fibers. APCBEE Proc. 1, 46-52. https://doi.org/10.1016/j.apcbee.2012.03.009

Morales-Conde, M.J.; Rodríguez-Liñán, C.; Pedreño-Rojas, M.A. (2016) Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works. Constr. Build. Mater. 114, 6-14. https://doi.org/10.1016/j.conbuildmat.2016.03.137

Rahmanian, I. (2011) Thermal and mechanical properties of gypsum boards and their influences in fire resistance of gypsum board based systems. Ph.D. Thesis, University of Manchester, UK.

UNE-EN 13501-1. (2007) Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 1: Clasificación a partir de datos obtenidos en ensayos de reacción al fuego. AENOR, Madrid.

ASTM C36/C36M-03e1. (2003) Standard specification for gypsum wallboard. ASTM International, West Conshohocken, PA.

Castellón, F.J.; Ayala, M.; Lanzón, M. (2022) Influence of tire rubber waste on the fire behavior of gypsum coatings of construction and structural elements. Mater. Construcc. 72 [345], e275. https://doi.org/10.3989/mc.2022.06421

Asdrubali, F.; D'Alessandro, F.; Schiavoni, S. (2015) A review of unconventional sustainable building insulation materials. Sustain. Mater. Technol. 4, 1-17. https://doi.org/10.1016/j.susmat.2015.05.002

UNE-EN 12664. (2002) Materiales de construcción. Determinación de la resistencia térmica por el método de la placa caliente guardada y el método del medidor del flujo de calor. Productos secos y húmedos de baja y media resistencia térmica. AENOR, Madrid.

UNE-EN 12667. (2002) Materiales de construcción. Determinación de la resistencia térmica por el método de la placa caliente guardada y el método del medidor de flujo de calor. Productos de alta y media resistencia térmica. AENOR, Madrid.

UNE-EN 12939. (2001) Materiales de construcción. Determinación de la resistencia térmica por el método de la placa caliente guardada y el método del medidor del flujo de calor. Productos de espesor alto de resistencia térmica alta y media. AENOR, Madrid.

ASTM C518-21. (2021) Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. ASTM International, West Conshohocken, PA.

Ouakarrouch, M.; El Azhary, K.; Laaroussi, N.; Garoum, M.; Kifani-Sahban, F. (2020) Thermal performances and environmental analysis of a new composite building material based on gypsum plaster and chicken feathers waste. Therm. Sci. Eng. Prog. 19, 100642. https://doi.org/10.1016/j.tsep.2020.100642

UNE-EN ISO 717-1. (2013) Acústica. Evaluación del aislamiento acústico en los edificios y de los elementos de construcción. Parte 1: Aislamiento a ruido aéreo. AENOR, Madrid.

UNE-EN ISO 10140-1. (2016) Acústica. Medición en laboratorio del aislamiento acústico de los elementos de construcción. Parte 1: Reglas de aplicación para productos específicos. AENOR, Madrid.

UNE-EN ISO 10534-2. (2002) Acústica. Determinación del coeficiente de absorción acústica y de la impedancia acústica en tubos de impedancia. Parte 2: Método de la función de transferencia. AENOR, Madrid.

UNE-EN ISO 354. (2004) Acústica. Medición de la absorción acústica en una cámara reverberante. AENOR, Madrid.

ASTM C423-09. (2009) Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. ASTM International, West Conshohocken, PA.

Boubel, A.; Garoum, M.; Bousshine, S.; Bybi, A. (2021) Investigation of loose wood chips and sawdust as alternative sustainable sound absorber materials. Appl. Acoust. 172, 107639. https://doi.org/10.1016/j.apacoust.2020.107639

Kłosak, A.K. (2020) Design, simulations and experimental research in the process of development of sound absorbing perforated ceiling tile. Appl. Acoust. 161, 107185. https://doi.org/10.1016/j.apacoust.2019.107185

Maderuelo-Sanz, R.; García-Cobos, F.J.; Sánchez-Delgado, F.J.; Meneses-Rodríguez, J.M.; Mota-López, M.I. (2022) Mechanical and acoustical evaluation of bio-based composites made of cork granulates for acoustic ceiling tiles. Mater. Construcc. 72 [347], e295. https://doi.org/10.3989/mc.2022.15221

Published

2023-11-02

How to Cite

Huaquisto Cáceres, S., Pari Quispe, D. K., & Cruz Maron, R. A. (2023). Eco-efficient thermoacoustic panels made of totora and gypsum for sustainable rural housing ceilings. Materiales De Construcción, 73(352), e331. https://doi.org/10.3989/mc.2023.346323

Issue

Section

Research Articles