Characteristic properties of fly ash-based self-compacting geopolymer mortars with synthetic wollastonite microfiber produced from silica and calcite
DOI:
https://doi.org/10.3989/mc.2023.296322Keywords:
Alkali ratio, Curing temperature, Self-compacting geopolymer, Synthetic wollastonite microfiberAbstract
This study investigated the fresh, physical, and mechanical properties of self-compacting geopolymer mortars (SCGs) with synthetic wollastonite microfiber (SWM). SCGs were designed with Class F fly ash (FA) as a binder by activating it with Na2SiO3 and NaOH solutions. First, SWM was produced in the laboratory. Alkali ratios were determined as 1.5, 2.0, and 2.5, whereas SWM percentages were utilized as 0%, 4%, 8%, and 12% by weight of the binder. After geopolymer mortars were cured at 80 oC and 100 oC for 24 hours, respectively, they were kept at room temperature until testing age. The compressive strength, flexural strength, ultrasonic pulse velocity, dynamic modulus of elasticity, water sorptivity coefficient values, and physical characteristics of SCGs were tested at the end of the 28th day. The highest compressive strength value was obtained as 28.9 MPa for SCG-1.5-8 cured at 100 oC, while 6.5 MPa was measured as the highest flexural strength for SCG-2-12 cured at 80 oC.
Downloads
References
Demie, S.; Nuruddin, M.F.; Shafiq, N. (2013) Effects of micro-structure characteristics of interfacial transition zone on the compressive strength of self-compacting geopolymer concrete. Constr. Build. Mater. 41, 91-98. https://doi.org/10.1016/j.conbuildmat.2012.11.067
Lee, W.K.W; Van Deventer, J.S.J. (2002) The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem. Concr. Res. 32 [4], 577-584. https://doi.org/10.1016/S0008-8846(01)00724-4
McDonald, M.; Thompson, J. (2005) Sodium silicate: A binder for the 21st century, The PQ Corporation. Industrial Chemicals Division.
Hardjito, D.; Rangan, B.V. (2005) Development and properties of low-calcium fly ash based geopolymer concrete. Research Report GC 1. 1-94. https://doi.org/10.1080/13287982.2005.11464946
Abdullah, M.M.A.B.; Kamarudin, H.; Khairul Nizar, I.; Bnhussain, M.; Zarina, Y.; Rafiza, A.R. (2012) Correlation between Na2SiO3/NaOH ratio and fly ash/alkaline activator ratio to the strength of geopolymer. Adv. Mat. Res. 341-342, 189-193 https://doi.org/10.4028/www.scientific.net/AMR.341-342.189
Sanni, S.H.; Khadiranaikar, R.B. (2013) Performance of alkaline solutions on grades of geopolymer concrete. IJRET. 366-371. https://doi.org/10.15623/ijret.2013.0213069
Kurklu, G.; Gorhan, G. (2019) Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Constr. Build. Mater. 217, 498-506. https://doi.org/10.1016/j.conbuildmat.2019.05.104
Joseph, B.; Mathew, G. (2012) Influence of aggregate content on the behaviour of fly ash based geopolymer concrete. Scientia Iranıca. 19 [5], 1188-1194. https://doi.org/10.1016/j.scient.2012.07.006
Petermann, J.C.; Saeed, A.; Hammons, M.I. (2010) Alkali-activated geopolymers: a literature review. Air force research laboratory materials and manufacturing directorate, 88ABW-2012-2030. Retrieved from: https://apps.dtic.mil/sti/pdfs/ADA559113.pdf . https://doi.org/10.21236/ADA559113
Silva, F.J.; Mathias, A.F.; Thaumaturgo, C. (1999) Evaluation of the fracture toughness in poly (sialate-siloxo) composite matrix. Proceedings of the Geopolymer International Conference (Geopolymer '99). 97-106.
Virta, R.L. (2011) Wollastonite, In Minerals yearbook, U.S. Geological Survey. Retrieved from: http://minerals.usgs.gov/minerals/pubs/commodity/wollastonite/myb1-2010-wolla.pdf .
Kogel, J.E.; Trivedi, N.C.; Barker, J.M.; Krukowski, S.T. (2006) Industrial minerals & rocks, 7th ed. Society for Mining, Metallurgy and Exploration.
Virta, R.L. (1999) Wollastonite. US Geological Survey Mineral Yearbook.
Akkaya, Y.; Kesler, Y.E. (2012) Mikro kalsit katkısının betonun işlenebilirliğine, mekanik özelliklerine ve dayanıklılığına etkisi. IMO Teknik Dergi. 384, 6051-6061.
Oz, H.O.; Güneş, M. (2021) The effects of synthetic wollastonite developed with calcite and quartz on high performance mortars. Struct. Concr. 22 [S1], E257-E272. https://doi.org/10.1002/suco.201900520
Yücel, H.E.; Özcan, S.; (2019) Strength characteristics and microstructural properties of cement mortars incorporating synthetic wollastonite produced with a new technique. Constr. Build. Mater. 223, 165-176. https://doi.org/10.1016/j.conbuildmat.2019.06.195
Oz, H.O.; Gunes, M. (2018) Vollastonit katkılı yüksek performanslı harçların mekanik ve durabilite özellikleri. Graduate Theses and Dissertations.
Kalla, P.; Rana, A.; Chad, Y.B.; Misra, A.; Csetenyi, L. (2015) Durability studies on concrete containing wollastonite. J. Clean. Pro. 87, 726-734. https://doi.org/10.1016/j.jclepro.2014.10.038
Bong, S.H.; Nematollahi, B.; Xia, M.; Nazari, A.; Sanjayan, J. (2020) Properties of one-part geopolymer incorporating wollastonite as partial replacement of geopolymer precursor or sand. Mater. Letters. 263, https://doi.org/10.1016/j.matlet.2019.127236
Ling, Y. (2018) Proportion and performance evaluation of fly ash based geopolymer and its application in engineered composites. Graduate Theses and Dissertations.
Nurjaya, D.M.; Astutiningsih, S.; Zulfia, A. (2015) Thermal effect on flexural strength of geopolymer matrix composite with alumina and wollastonite as fillers. Int. J. Technol. 6, 462-470. https://doi.org/10.14716/ijtech.v6i3.1441
Ransinchung, G.D.; Kumar, B. (2010) Investigations on pastes and mortars of ordinary portland cement admixed with wollastonite and microsilica, J. Mater. in Civil Eng. 22 [4]. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000019
Nuruddin, M.F.; Samuel, D.; Nasir, S. (2011) Effect of mix composition on workability and compressive strength of self-compacting geopolymer concrete. Can. J. Civil Eng. NRC Res. Press. 38 [11], 1196-203. https://doi.org/10.1139/l11-077
Memon, F.A.; Nuriddin, M.F.; Demie, S.; Shafiq, N. (2011) Effect of curing conditions on strength of fly-ashed based self-compacting geopolymer concrete. IJCEE 5 [8], 342-345.
Yip, C.K.; Lukey, G.C.; Provis, J.L.; Van Deventer, J.S. (2008) Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38 [4], 554-564. https://doi.org/10.1016/j.cemconres.2007.11.001
EFNARC F. (2002) Specification and guidelines for self-compacting concrete, European federation of specialist construction chemicals and concrete system.
Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. (2022) Geopolymer: a systematic review of methodologies. Materials. 15, 6852. https://doi.org/10.3390/ma15196852 PMid:36234194 PMCid:PMC9571997
ASTM C642-13 (2013) Standard test method for density, absorption, and voids in hardened concrete, West Conshohocken PA.
ASTM C348-14 (2017) Standard test method for flexural strength of hydraulic-cement mortars, Annual Book of ASTM Standards.
ASTM C349-14 (2017) Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure), Annual Book of ASTM Standards.
ASTM C597-16 (2016) Standard Test Method for Pulse Velocity Through Concrete, Annual Book of ASTM Standards.
Haseli, M.; Layeghi, M.; Hosseinabadi, H.Z. (2020) Evaluation of modulus of elasticity of date palm sandwich panels using ultrasonic wave velocity and experimental models, Measurement. 149, 107016. https://doi.org/10.1016/j.measurement.2019.107016
ASTM C1585-20 (2020) Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. West Conshohocken, PA: ASTM International.
Tatnall, P.C. (2006) Fiber-reinforced concrete. E-Publishing Inc. 578-590. https://doi.org/10.1520/STP37767S
Patankar, S.V.; Jamkar, S.S.; Ghugal, Y.M. (2012) Effect of sodium hydroxide on flow and strength of fly ash based geopolymer mortar. J. Struct. Eng. 39 [1], 7-12.
Atabey, I.I. (2017) F sınıfı uçucu küllü geopolimer harcının durabilite özelliklerinin araştırılması. Graduate Theses and Dissertations.
Öz, H.Ö.; Doğan-Sağlamtimur, N.; Bilgil, A.; Tamer, A.; Günaydin, K. (2021) Process development of fly ash-based geopolymer mortars in view of the mechanical characteristics. Materials. 29, 14 [11], 1-22. https://doi.org/10.3390/ma14112935 PMid:34072388 PMCid:PMC8199198
Renumathi, M.; Mukesh, P.; Balamurugan, P. (2020) A state of art on geopolymer concrete. Adalya J. 9 [1], 372-378.
Zuhua, Z.; Xiao, Y.; Huajun, Z.; Yue, C. (2009) Role of water in the synthesis of calcined kaolin based geopolymer. Appl. Clay Sci. 43, 218-223. https://doi.org/10.1016/j.clay.2008.09.003
Prud'homme, E.; Joussein, E.; Peyratout, C.; Smith, A.; Rossignol, S. (2010) Consolidated geo-materials from sand or industrial waste. Ceram. Eng. Sci. 30, 314-324. https://doi.org/10.1002/9780470584262.ch29
Kovalchuk, G.; Fernandez-Jimenez, A.; Palomo, A. (2017) Alkali activated fly ash: effect of thermal curing conditions on mechanical and microstructural development-Part II. Fuel. 86, 315-22. https://doi.org/10.1016/j.fuel.2006.07.010
Lin, K.; Chang, J.; Chen, G.; Ruan, M.; Ning, C. (2007) A simple method to synthesize single-crystalline β-wollastonite nanowires. Mater. Sci. 300 [2], 267-271. https://doi.org/10.1016/j.jcrysgro.2006.11.215
Lai, M.; Binhowimal, S.; Hanžič, L.; Wang, Q.; Ho, J. (2020) Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers. Struct. Concr. 21 [4], 1-17. https://doi.org/10.1002/suco.201900320
Khale, D.; Chaudhary, R. (2007) Mechanism of geopolymerization and factors influencing its development. J. Mater. Sci. 42, 729-746. https://doi.org/10.1007/s10853-006-0401-4
Nikonova, N.S.; Tikhomirova, I.N.; Belyakov, A.V.; Zakharov, A.I. (2003) Wollastonite in silicate matrices. Glass Ceramics. 60, 342-346. https://doi.org/10.1023/B:GLAC.0000008241.84600.f9
Dey, V.; Kachala, R.; Bonakdar, A.; Mobasher, B. (2015) Mechanical properties of micro and sub-micron wollastonite fibers in cementitious composites. Constr. Build. Mater. 82, 351-359. https://doi.org/10.1016/j.conbuildmat.2015.02.084
Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Van Deventer, J.S. (2007) Geopolymer technology: the current state of the art. J. Mater. Sci. 42 [9], 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
Zuda, L.; Pavlik, Z.; Rovnanikova, P.; Bayer, P.; Cerny, R. (2006) Properties of alkali activated aluminosilicate material after thermal load. Int. J. Thermophys. 27 [4], 1250-1263. https://doi.org/10.1007/s10765-006-0077-7
Hughes, B.P. (1981) Design of prestressed fiber reinforced concrete beams for impact. ACI Materials Journal. 78, 276-281. https://doi.org/10.14359/6925
Mathur, R.; Misra, A.K.; Goel, P. (2007) Influence of wollastonite on mechanical properties of concrete. J. Sci. Ind. Res. 66, 1029-1034.
Wahab, M.A. Latif, I.A.; Kohail, M.; Almasry, A. (2017) The use of wollastonite to enhance the mechanical properties of mortar mixes. Constr. Build. Mater. 152, 304-309. https://doi.org/10.1016/j.conbuildmat.2017.07.005
Soliman, A.M.; Nehdi, M.L. (2014) Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behaviour of ultrahigh performance concrete. Cem. Concr. Compos. 46, 81-89. https://doi.org/10.1016/j.cemconcomp.2013.11.008
Banthia, N.; Sheng, J. (1996) Fracture toughness of micro-fiber reinforced cement composites. Cem. Concr. Compos. 18 [4], 251-269. https://doi.org/10.1016/0958-9465(95)00030-5
Hameed, R.; Turatsinze, A.; Duprat, F.; Sellier, A. (2009) Metallic fiber reinforced concrete: Effect of fiber aspect ratio on the flexural properties. ARPN J. Eng. Appl. Sci. 4, 67-72.
Malhotra, V.M. (1976) Testing hardened concrete: nondestructive methods. ACI Monograph No.9.
Xu, S.; Malik, M.A.; Qi, Z.; Huang, B.; Li, Q.; Sarkar, M. (2018) Influence of the PVA fibers and SiO2 NPs on the structural properties of fly ash based sustainable geopolymer. Constr. Build. Mater. 164, 238-245. https://doi.org/10.1016/j.conbuildmat.2017.12.227
Alnahhal, A.M.; Alengaram, U.J.; Yusoff, S.; Singh, R.; Radwan, M.K.H; Deboucha, W. (2021) Synthesis of sustainable lightweight foamed concrete using palm oil fuel ash as a cement replacement material. J. Build. Eng. 35, 102047. https://doi.org/10.1016/j.jobe.2020.102047
Gupta, T.; Siddique, S.; Sharma, R.K.; Chaudhary, S. (2017) Effect of elevated temperature and cooling regimes on mechanical and durability properties of concrete containing waste rubber fiber. Constr. Build. Mater. 137, 35-45. https://doi.org/10.1016/j.conbuildmat.2017.01.065
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.