Effects of the mineralogical composition and particle size distribution of ladle furnace slag as a cement/fine aggregate replacement in concrete

Authors

DOI:

https://doi.org/10.3989/mc.2023.301422

Keywords:

Concrete, Ladle furnace slag, Mechanical properties, Volumetric instability, Microstructure

Abstract


Ladle furnace slag (LFS) shows excellent potential for valorization. Despite this, landfills are typically its final destination, mainly because of technological barriers in its valorization process. This work examines the potential use of LFS as a partial cement/fine aggregate replacement, focusing on the effects of LFS composition and particle size distribution on concrete physico-mechanical properties. Chemical/mineralogical characterization of raw/hydrated samples, fresh-/hardened-state concrete properties, and volumetric instability tests were evaluated. Our results show reduced mechanical performance with LFS replacement, reaching compressive strength values of 32-42 MPa after 28 days. LFS mineralogical characterization reveals the absence of free CaO and the presence of periclase with its hydration/carbonation products. Therefore, the weathering/maturity process mainly affects free CaO. Furthermore, the observed volumetric instability issues were within the Code on Structural Concrete (Spanish abbreviation: EHE) established limits (0.04%), suggesting that the remaining periclase could be responsible for this expansive behavior.

 

Downloads

Download data is not yet available.

References

Schneider, M. (2019) The cement industry on the way to a low-carbon future. Cem. Concr. Res. 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792

Madlool, N.A.; Saidur, R.; Rahim, N.A.; Kamalisarvestani, M. (2013) An overview of energy savings measures for cement industries. Renew. Sust. Energ. Rev. 19, 18-29. https://doi.org/10.1016/j.rser.2012.10.046

Lothenbach, B.; Scrivener, K.; Hooton, R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41 [12], 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001

Thomas, M. (2013) Supplementary cementing materials in concrete, 1st ed., CRC Press, Boca Raton. https://doi.org/10.1201/b14493

Pauliuk, S.; Milford, R.L.; Müller, D.B.; Allwood, J.M. (2013) The steel scrap age. Environ. Sci. Technol. 47 [7], 3448-3454. https://doi.org/10.1021/es303149z PMid:23442209

Montenegro-Cooper, J.M.; Celemín-Matachana, M.; Cañizal, J.; González, J.J. (2019) Study of the expansive behavior of ladle furnace slag and its mixture with low quality natural soils. Constr. Build. Mater. 203, 201-209. https://doi.org/10.1016/j.conbuildmat.2019.01.040

Adesanya, E.; Sreenivasan, H.; Kantola, A.M.; Telkki, V.V.; Ohenoja, K.; Kinnunen, P.; et. al. (2018) Ladle slag cement - Characterization of hydration and conversion. Constr. Build. Mater. 193, 128-134. https://doi.org/10.1016/j.conbuildmat.2018.10.179

Wang, Y.; Suraneni, P. (2019) Experimental methods to determine the feasibility of steel slags as supplementary cementitious materials. Constr. Build. Mater. 204, 458-467. https://doi.org/10.1016/j.conbuildmat.2019.01.196

Ranfionich, E.V.; Barra, M. (2001) Reactividad y expansión de las escorias de acería de horno de arco eléctrico en relación con sus aplicaciones en la construcción. Mater. Construcc. 51 [263-264], 137-148. https://doi.org/10.3989/mc.2001.v51.i263-264.359

Setién, J.; Hernández, D.; González, J.J. (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr. Build. Mater. 23 [5], 1788-1794. https://doi.org/10.1016/j.conbuildmat.2008.10.003

Yildirim, I.Z.; Prezzi, M. (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv. Civ. Eng. 2011, 463638. https://doi.org/10.1155/2011/463638

Montenegro, J.M.; Celemín-Matachana, M.; Cañizal, J.; Setién, J. (2013) Ladle furnace slag in the construction of embankments: expansive behavior. J. Mater. Civ. Eng. 25 [8], 972-979. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000642

Shi, C. (2004) Steel slag-its production, processing, characteristics, and cementitious properties. J. Mater. Civ. Eng. 16 [3], 230-236. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(230)

Papayianni, I.; Anastasiou, E. (2012) Effect of granulometry on cementitious properties of ladle furnace slag. Cem. Concr. Compos. 34 [3], 400-407. https://doi.org/10.1016/j.cemconcomp.2011.11.015

Choi, S.; Kim, J. (2020) Hydration reactivity of calcium-aluminate-based ladle furnace slag powder according to various cooling conditions. Cem. Concr. Compos. 114, 103734. https://doi.org/10.1016/j.cemconcomp.2020.103734

Zhao, J.; Liu, Q.; Fang, K. (2020) Optimization of f-MgO/f-CaO phase in ladle furnace slag by air rapidly cooling. Mater. Lett. 280, 128528. https://doi.org/10.1016/j.matlet.2020.128528

Tossavainen, M.; Engstrom, F.; Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B. (2007) Characteristics of steel slag under different cooling conditions. Waste Manag. 27 [10], 1335-1344. https://doi.org/10.1016/j.wasman.2006.08.002 PMid:17005388

Adolfsson, D.; Robinson, R.; Engström, F.; Björkman, B. (2011) Influence of mineralogy on the hydraulic properties of ladle slag. Cem. Concr. Res. 41 [8], 865-871. https://doi.org/10.1016/j.cemconres.2011.04.003

Herrero, T.; Vegas, I.J.; Santamaría, A.; San-José, J.T.; Skaf, M. (2016) Effect of high-alumina ladle furnace slag as cement substitution in masonry mortars. Constr. Build. Mater. 123, 404-413. https://doi.org/10.1016/j.conbuildmat.2016.07.014

Rodríguez, A.; Santamaría-Vicario, I.; Calderón, V.; Junco, C.; García-Cuadrado, J. (2019) Study of the expansion of cement mortars manufactured with Ladle Furnace Slag LFS. Mater. Construcc. 69 [334], e183. https://doi.org/10.3989/mc.2019.06018

Sideris, K.K.; Tassos, C.; Chatzopoulos, A.; Manita, P. (2018) Mechanical characteristics and durability of self compacting concretes produced with ladle furnace slag. Constr. Build. Mater. 170, 660-667. https://doi.org/10.1016/j.conbuildmat.2018.03.091

Anastasiou, E.K.; Papayianni, I.; Papachristoforou, M. (2014) Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement. Mater. Des. 59, 454-460. https://doi.org/10.1016/j.matdes.2014.03.030

Papayianni, I.; Anastasiou, E. (2010) Production of high-strength concrete using high volume of industrial by-products. Constr. Build. Mater. 24 [8], 1412-1417. https://doi.org/10.1016/j.conbuildmat.2010.01.016

Sadiqul Islam, G.M.; Akter, S.; Reza, T.B. (2022) Sustainable high-performance, self-compacting concrete using ladle slag. Clean. Eng. Technol. 7, 100439. https://doi.org/10.1016/j.clet.2022.100439

Santamaría, A.; González, J.J.; Losáñez, M.M.; Scaf, M.; Ortega-López, V. (2020) The design of self-compacting structural mortar containing steelmaking slag as aggregate. Cem. Concr. Compos. 111, 103627. https://doi.org/10.1016/j.cemconcomp.2020.103627

Ortega-López, V.; García-Llona, A.; Revilla-Cuesta, V.; Santamaría, A.; San-Jose, J.T. (2021) Fiber-reinforcement and its effects on the mechanical properties of high-workability concretes manufactured with slag as aggregate and binder. J. Build. Eng. 43, 102548. https://doi.org/10.1016/j.jobe.2021.102548

UNE-EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements. AENOR, Madrid, 2011.

UNE-EN 933-1, Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method. AENOR, Madrid, 2012.

UNE 80103, Test methods of cements. Physical analysis. Actual density determination. AENOR, Madrid, 2013.

Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. (2013) An overview of utilization of steel slag. Procedia Environ. Sci. 16, 791-801. https://doi.org/10.1016/j.proenv.2012.10.108

Adolfsson, D.; Engström, F.; Robinson, R.; Björkman, B. (2010) Cementitious phases in ladle slag. Steel Res. Int. 82 [4], 398-403. https://doi.org/10.1002/srin.201000176

Saez-de-Guinoa Vilaplana, A.; Ferreira, V.J.; López-Sabirón, A.M.; Aranda-Usón, A.; Lausín-González, C.; Berganza-Conde, C.; et al. (2015) Utilization of ladle furnace slag from a steelwork for laboratory scale production of portland cement. Constr. Build. Mater. 94, 837-843. https://doi.org/10.1016/j.conbuildmat.2015.07.075

UNE-EN 12350-2. (2020) Testing fresh concrete - Part 2: Slump test. AENOR, Madrid.

UNE-EN 12350-7. (2020) Testing fresh concrete - Part 7: Air content - pressure methods. AENOR, Madrid.

UNE-EN 12390-3. (2020) Testing hardened concrete - Part 3: Compressive strength of test specimens. AENOR, Madrid.

ASTM C490 / C490M-17 (2017) Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete. ASTM International, West Conshohocken, PA.

ASTM C1038 / C1038M-19. (2019) Standard test method for expansion of hydraulic cement mortar bars stored in water. ASTM International, West Conshohocken, PA.

Rađenović, A.; Malina, J.; Sofilić, T. (2013) Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv. Mater. Sci. Eng. 2013, 1-6. https://doi.org/10.1155/2013/198240

Hughes, T.L.; Methven, C.M.; Jones, T.G.J.; Pelham, S.E.; Fletcher, P.; Hall, C. (1995) Determining cement composition by Fourier transform infrared spectroscopy. Adv. Cem. Based Mater. 2 [3], 91-104. https://doi.org/10.1016/1065-7355(94)00031-X

Horgnies, M.; Chen, J.J.; Bouillon, C. (2013) Overview about the use of fourier transform infrared spectroscopy to study cementitious materials. in: Mc13, WIT Press, Southampton, UK, 251-262. https://doi.org/10.2495/MC130221

Kriskova, L.; Pontikes, Y.; Cizer, Ö.; Malfliet, A.; Dijkmans, J.; Sels, B.; et al. (2014) Hydraulic Behavior of mechanically and chemically activated synthetic merwinite. J. Am. Ceram. Soc. 97 [12], 3973-3981. https://doi.org/10.1111/jace.13221

Li, J.; Yu, Q.; Wei, J.; Zhang, T. (2011) Structural characteristics and hydration kinetics of modified steel slag. Cem. Concr. Res. 41 [3], 324-329. https://doi.org/10.1016/j.cemconres.2010.11.018

Fernández-Carrasco, L.; Torrens-Martín, D.; Morales, L.M.; Martínez-Ramírez, S. (2012) Infrared spectroscopy in the analysis of building and construction materials. T. Theophanides (Ed.), Infrared spectroscopy - materials science, engineering and technology, InTech. 369-382. https://doi.org/10.5772/36186

Kriskova, L.; Pontikes, Y.; Cizer, Ö.; Mertens, G.; Veulemans, W.; Geysen, D.; et al. (2012) Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem. Concr. Res. 42 [6], 778-788. https://doi.org/10.1016/j.cemconres.2012.02.016

Kuenzel, C.; Zhang, F.; Ferrándiz-Mas, V.; Cheeseman, C.R.; Gartner, E.M. (2018) The mechanism of hydration of MgO-hydromagnesite blends. Cem. Concr. Res. 103, 123-129. https://doi.org/10.1016/j.cemconres.2017.10.003

Published

2023-03-06

How to Cite

Araos, P. ., Montaño, T. ., Valls, S. ., Barra, M. ., & Aponte, D. . (2023). Effects of the mineralogical composition and particle size distribution of ladle furnace slag as a cement/fine aggregate replacement in concrete. Materiales De Construcción, 73(349), e304. https://doi.org/10.3989/mc.2023.301422

Issue

Section

Research Articles

Funding data