Effects of the mineralogical composition and particle size distribution of ladle furnace slag as a cement/fine aggregate replacement in concrete
DOI:
https://doi.org/10.3989/mc.2023.301422Keywords:
Concrete, Ladle furnace slag, Mechanical properties, Volumetric instability, MicrostructureAbstract
Ladle furnace slag (LFS) shows excellent potential for valorization. Despite this, landfills are typically its final destination, mainly because of technological barriers in its valorization process. This work examines the potential use of LFS as a partial cement/fine aggregate replacement, focusing on the effects of LFS composition and particle size distribution on concrete physico-mechanical properties. Chemical/mineralogical characterization of raw/hydrated samples, fresh-/hardened-state concrete properties, and volumetric instability tests were evaluated. Our results show reduced mechanical performance with LFS replacement, reaching compressive strength values of 32-42 MPa after 28 days. LFS mineralogical characterization reveals the absence of free CaO and the presence of periclase with its hydration/carbonation products. Therefore, the weathering/maturity process mainly affects free CaO. Furthermore, the observed volumetric instability issues were within the Code on Structural Concrete (Spanish abbreviation: EHE) established limits (0.04%), suggesting that the remaining periclase could be responsible for this expansive behavior.
Downloads
References
Schneider, M. (2019) The cement industry on the way to a low-carbon future. Cem. Concr. Res. 124, 105792. https://doi.org/10.1016/j.cemconres.2019.105792
Madlool, N.A.; Saidur, R.; Rahim, N.A.; Kamalisarvestani, M. (2013) An overview of energy savings measures for cement industries. Renew. Sust. Energ. Rev. 19, 18-29. https://doi.org/10.1016/j.rser.2012.10.046
Lothenbach, B.; Scrivener, K.; Hooton, R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41 [12], 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001
Thomas, M. (2013) Supplementary cementing materials in concrete, 1st ed., CRC Press, Boca Raton. https://doi.org/10.1201/b14493
Pauliuk, S.; Milford, R.L.; Müller, D.B.; Allwood, J.M. (2013) The steel scrap age. Environ. Sci. Technol. 47 [7], 3448-3454. https://doi.org/10.1021/es303149z PMid:23442209
Montenegro-Cooper, J.M.; Celemín-Matachana, M.; Cañizal, J.; González, J.J. (2019) Study of the expansive behavior of ladle furnace slag and its mixture with low quality natural soils. Constr. Build. Mater. 203, 201-209. https://doi.org/10.1016/j.conbuildmat.2019.01.040
Adesanya, E.; Sreenivasan, H.; Kantola, A.M.; Telkki, V.V.; Ohenoja, K.; Kinnunen, P.; et. al. (2018) Ladle slag cement - Characterization of hydration and conversion. Constr. Build. Mater. 193, 128-134. https://doi.org/10.1016/j.conbuildmat.2018.10.179
Wang, Y.; Suraneni, P. (2019) Experimental methods to determine the feasibility of steel slags as supplementary cementitious materials. Constr. Build. Mater. 204, 458-467. https://doi.org/10.1016/j.conbuildmat.2019.01.196
Ranfionich, E.V.; Barra, M. (2001) Reactividad y expansión de las escorias de acería de horno de arco eléctrico en relación con sus aplicaciones en la construcción. Mater. Construcc. 51 [263-264], 137-148. https://doi.org/10.3989/mc.2001.v51.i263-264.359
Setién, J.; Hernández, D.; González, J.J. (2009) Characterization of ladle furnace basic slag for use as a construction material. Constr. Build. Mater. 23 [5], 1788-1794. https://doi.org/10.1016/j.conbuildmat.2008.10.003
Yildirim, I.Z.; Prezzi, M. (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv. Civ. Eng. 2011, 463638. https://doi.org/10.1155/2011/463638
Montenegro, J.M.; Celemín-Matachana, M.; Cañizal, J.; Setién, J. (2013) Ladle furnace slag in the construction of embankments: expansive behavior. J. Mater. Civ. Eng. 25 [8], 972-979. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000642
Shi, C. (2004) Steel slag-its production, processing, characteristics, and cementitious properties. J. Mater. Civ. Eng. 16 [3], 230-236. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(230)
Papayianni, I.; Anastasiou, E. (2012) Effect of granulometry on cementitious properties of ladle furnace slag. Cem. Concr. Compos. 34 [3], 400-407. https://doi.org/10.1016/j.cemconcomp.2011.11.015
Choi, S.; Kim, J. (2020) Hydration reactivity of calcium-aluminate-based ladle furnace slag powder according to various cooling conditions. Cem. Concr. Compos. 114, 103734. https://doi.org/10.1016/j.cemconcomp.2020.103734
Zhao, J.; Liu, Q.; Fang, K. (2020) Optimization of f-MgO/f-CaO phase in ladle furnace slag by air rapidly cooling. Mater. Lett. 280, 128528. https://doi.org/10.1016/j.matlet.2020.128528
Tossavainen, M.; Engstrom, F.; Yang, Q.; Menad, N.; Lidstrom Larsson, M.; Bjorkman, B. (2007) Characteristics of steel slag under different cooling conditions. Waste Manag. 27 [10], 1335-1344. https://doi.org/10.1016/j.wasman.2006.08.002 PMid:17005388
Adolfsson, D.; Robinson, R.; Engström, F.; Björkman, B. (2011) Influence of mineralogy on the hydraulic properties of ladle slag. Cem. Concr. Res. 41 [8], 865-871. https://doi.org/10.1016/j.cemconres.2011.04.003
Herrero, T.; Vegas, I.J.; Santamaría, A.; San-José, J.T.; Skaf, M. (2016) Effect of high-alumina ladle furnace slag as cement substitution in masonry mortars. Constr. Build. Mater. 123, 404-413. https://doi.org/10.1016/j.conbuildmat.2016.07.014
Rodríguez, A.; Santamaría-Vicario, I.; Calderón, V.; Junco, C.; García-Cuadrado, J. (2019) Study of the expansion of cement mortars manufactured with Ladle Furnace Slag LFS. Mater. Construcc. 69 [334], e183. https://doi.org/10.3989/mc.2019.06018
Sideris, K.K.; Tassos, C.; Chatzopoulos, A.; Manita, P. (2018) Mechanical characteristics and durability of self compacting concretes produced with ladle furnace slag. Constr. Build. Mater. 170, 660-667. https://doi.org/10.1016/j.conbuildmat.2018.03.091
Anastasiou, E.K.; Papayianni, I.; Papachristoforou, M. (2014) Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement. Mater. Des. 59, 454-460. https://doi.org/10.1016/j.matdes.2014.03.030
Papayianni, I.; Anastasiou, E. (2010) Production of high-strength concrete using high volume of industrial by-products. Constr. Build. Mater. 24 [8], 1412-1417. https://doi.org/10.1016/j.conbuildmat.2010.01.016
Sadiqul Islam, G.M.; Akter, S.; Reza, T.B. (2022) Sustainable high-performance, self-compacting concrete using ladle slag. Clean. Eng. Technol. 7, 100439. https://doi.org/10.1016/j.clet.2022.100439
Santamaría, A.; González, J.J.; Losáñez, M.M.; Scaf, M.; Ortega-López, V. (2020) The design of self-compacting structural mortar containing steelmaking slag as aggregate. Cem. Concr. Compos. 111, 103627. https://doi.org/10.1016/j.cemconcomp.2020.103627
Ortega-López, V.; García-Llona, A.; Revilla-Cuesta, V.; Santamaría, A.; San-Jose, J.T. (2021) Fiber-reinforcement and its effects on the mechanical properties of high-workability concretes manufactured with slag as aggregate and binder. J. Build. Eng. 43, 102548. https://doi.org/10.1016/j.jobe.2021.102548
UNE-EN 197-1, Cement - Part 1: Composition, specifications and conformity criteria for common cements. AENOR, Madrid, 2011.
UNE-EN 933-1, Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method. AENOR, Madrid, 2012.
UNE 80103, Test methods of cements. Physical analysis. Actual density determination. AENOR, Madrid, 2013.
Yi, H.; Xu, G.; Cheng, H.; Wang, J.; Wan, Y.; Chen, H. (2013) An overview of utilization of steel slag. Procedia Environ. Sci. 16, 791-801. https://doi.org/10.1016/j.proenv.2012.10.108
Adolfsson, D.; Engström, F.; Robinson, R.; Björkman, B. (2010) Cementitious phases in ladle slag. Steel Res. Int. 82 [4], 398-403. https://doi.org/10.1002/srin.201000176
Saez-de-Guinoa Vilaplana, A.; Ferreira, V.J.; López-Sabirón, A.M.; Aranda-Usón, A.; Lausín-González, C.; Berganza-Conde, C.; et al. (2015) Utilization of ladle furnace slag from a steelwork for laboratory scale production of portland cement. Constr. Build. Mater. 94, 837-843. https://doi.org/10.1016/j.conbuildmat.2015.07.075
UNE-EN 12350-2. (2020) Testing fresh concrete - Part 2: Slump test. AENOR, Madrid.
UNE-EN 12350-7. (2020) Testing fresh concrete - Part 7: Air content - pressure methods. AENOR, Madrid.
UNE-EN 12390-3. (2020) Testing hardened concrete - Part 3: Compressive strength of test specimens. AENOR, Madrid.
ASTM C490 / C490M-17 (2017) Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete. ASTM International, West Conshohocken, PA.
ASTM C1038 / C1038M-19. (2019) Standard test method for expansion of hydraulic cement mortar bars stored in water. ASTM International, West Conshohocken, PA.
Rađenović, A.; Malina, J.; Sofilić, T. (2013) Characterization of ladle furnace slag from carbon steel production as a potential adsorbent. Adv. Mater. Sci. Eng. 2013, 1-6. https://doi.org/10.1155/2013/198240
Hughes, T.L.; Methven, C.M.; Jones, T.G.J.; Pelham, S.E.; Fletcher, P.; Hall, C. (1995) Determining cement composition by Fourier transform infrared spectroscopy. Adv. Cem. Based Mater. 2 [3], 91-104. https://doi.org/10.1016/1065-7355(94)00031-X
Horgnies, M.; Chen, J.J.; Bouillon, C. (2013) Overview about the use of fourier transform infrared spectroscopy to study cementitious materials. in: Mc13, WIT Press, Southampton, UK, 251-262. https://doi.org/10.2495/MC130221
Kriskova, L.; Pontikes, Y.; Cizer, Ö.; Malfliet, A.; Dijkmans, J.; Sels, B.; et al. (2014) Hydraulic Behavior of mechanically and chemically activated synthetic merwinite. J. Am. Ceram. Soc. 97 [12], 3973-3981. https://doi.org/10.1111/jace.13221
Li, J.; Yu, Q.; Wei, J.; Zhang, T. (2011) Structural characteristics and hydration kinetics of modified steel slag. Cem. Concr. Res. 41 [3], 324-329. https://doi.org/10.1016/j.cemconres.2010.11.018
Fernández-Carrasco, L.; Torrens-Martín, D.; Morales, L.M.; Martínez-Ramírez, S. (2012) Infrared spectroscopy in the analysis of building and construction materials. T. Theophanides (Ed.), Infrared spectroscopy - materials science, engineering and technology, InTech. 369-382. https://doi.org/10.5772/36186
Kriskova, L.; Pontikes, Y.; Cizer, Ö.; Mertens, G.; Veulemans, W.; Geysen, D.; et al. (2012) Effect of mechanical activation on the hydraulic properties of stainless steel slags. Cem. Concr. Res. 42 [6], 778-788. https://doi.org/10.1016/j.cemconres.2012.02.016
Kuenzel, C.; Zhang, F.; Ferrándiz-Mas, V.; Cheeseman, C.R.; Gartner, E.M. (2018) The mechanism of hydration of MgO-hydromagnesite blends. Cem. Concr. Res. 103, 123-129. https://doi.org/10.1016/j.cemconres.2017.10.003
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Agencia Nacional de Investigación y Desarrollo
Grant numbers 72200568