Influence of crystallizing type chemical admixture on precast micro concretes: a statistical analysis and holistic engineering overview

Authors

DOI:

https://doi.org/10.3989/mc.2024.352323

Keywords:

Concrete, Crystallizer, Chemical admixture, Precast concrete, Micro concrete

Abstract


The aim of this paper is to evaluate the influence of a crystallizing chemical admixture on precast micro concretes with two water contents (7% and 11%, by dried mass) and two different conditions of exposure. Thus, precast micro concretes with a composition of 1:3 (cement: fines) with and without crystalline chemical admixture were evaluated on compressive strength (at the age of 28 and 154 days) and water absorption by immersion (at the age of 154 days). Statistical analysis showed that the only significant factor was the effect of the water content on the compressive strength. Besides that, the most significant factors for the water absorption and voids index properties were the water content, followed by the exposure conditions, and the interaction between the water content and the presence of the chemical admixture. The crystalline admixture was insignificant in the conditions of this research.

Downloads

Download data is not yet available.

References

Al-Rashed R, Jabari RM. 2020. Dual-crystallization waterproofing technology for topical treatment of concrete. Case Studies. Constr. Mater. 13:e00408. https://doi.org/10.1016/j.cscm.2020.e00408

Yazigi W. 2003. The technique of building. in Portuguese: A técnica de edificar. 5th edition, São Paulo: PINI.

Feng Z, Wang F, Xie T, Ou J, Xue M, Li W. 2019. Integral hydrophobic concrete without using silane. Constr. Build. Mater. 227:116678. https://doi.org/10.1016/j.conbuildmat.2019.116678

Li J, Cao J, Ren Q, Ding Y, Zhu H, Xiong C, Chen R. 2021. Effect of nano-silica and silicone oil paraffin emulsion composite waterproofing agent on the water resistance of flue gas desulfurization gypsum. Constr. Build. Mater. 287:123055. https://doi.org/10.1016/j.conbuildmat.2021.123055

Rahman MM, Chamberlain DA. 2016. Application of crystallizing hydrophobic mineral and curing agent to fresh concrete. Constr. Build. Mater. 127:945-949. https://doi.org/10.1016/j.conbuildmat.2016.08.150

Al-Kheetan MJ, Rahman MM, Chamberlain DA. 2018. Development of hydrophobic concrete by adding dual-crystalline admixture at mixing stage. Struct. Concr. 19(5):1504-1511. https://doi.org/10.1002/suco.201700254

Al-Rashed R, Al-Jabari M. 2021. Concrete protection by combined hygroscopic and hydrophilic crystallization waterproofing applied to fresh concrete. Case Studies in Constr. Mater. 15:e00635. https://doi.org/10.1016/j.cscm.2021.e00635

Al-Rashed R, Al-Jabari M. 2021. Multi-crystallization enhancer for concrete waterproofing by pore blocking. Constr. Build. Mater. 272:121668. https://doi.org/10.1016/j.conbuildmat.2020.121668

Cascudo O, Peres P, Carasek H, Castro A, Lopes A. 2021. Evaluation of the pore solution of concretes with mineral additions subjected to 14 years of natural carbonation. Cement Concrete Comp. 115:103858. https://doi.org/10.1016/j.cemconcomp.2020.103858

Oliveira AM, Cascudo O. 2018. Effect of mineral additions incorporated in concrete on thermodynamic and kinetic parameters of chloride-induced reinforcement corrosion. Constr. Build. Mater. 192:467-477. https://doi.org/10.1016/j.conbuildmat.2018.10.100

Zhan PM, He ZH, Ma ZM, Liang CF, Zhang XX, Abreham AA, Shi JY. 2020. Utilization of nano-metakaolin in concrete: A review. J. Build. Eng. 30:101259. https://doi.org/10.1016/j.jobe.2020.101259

Younes MM, Abdel-Rahman HA, Khattab MM. 2018. Utilization of rice husk ash and waste glass in the production of ternary blended cement mortar composites. J. Build. Eng. 20:42-50. https://doi.org/10.1016/j.jobe.2018.07.001

Park B, Choi YC. 2018. Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Constr. Build. Mater. 189:1054-1066. https://doi.org/10.1016/j.conbuildmat.2018.09.061

Agostinho LB, Pereira AC, da Silva EF, Toledo Filho RD. 2021. Rheological study of Portland cement pastes modified with superabsorbent polymer and nanosilica. J. Build. Eng. 34:102024. https://doi.org/10.1016/j.jobe.2020.102024

Mohammed TU, Hamada H. 2003. Durability of concrete made with different water-reducing chemical admixtures in tidal environment. ACI Mater. J. 100(3):194-202. https://doi.org/10.14359/12619

Zhan PM, He ZH. 2019. Application of shrinkage reducing admixture in concrete: A review. Constr. Build. Mater. 201:676-690. https://doi.org/10.1016/j.conbuildmat.2018.12.209

Oliveira AS, Gomes ODFM, Ferrara L, Fairbairn EDMR, Toledo Filho RD. 2021. An overview of a twofold effect of crystalline admixtures in cement-based materials: From permeability-reducers to self-healing stimulators. J. Build. Eng. 41:102400. https://doi.org/10.1016/j.jobe.2021.102400

Martin JFM. 2005. Concrete admixtures (in Portuguese: Aditivos para Concreto). In: G.C. Isaia. Editor. Concrete: Teaching, Research and Achievements (in Portuguese: Concreto: Ensino, Pesquisa e Realizações. 1. São Paulo: IBRACON, 2v.

Takagi EM. 2013. Self-healing concrete with Brazilian blast furnace slag cements activated by crystalline catalyst (in Portuguese: Concretos auto cicatrizantes com cimentos brasileiros de escória de alto-forno ativados por catalisador cristalino). Dissertation - Instituto Tecnológico de Aeronáutica (ITA). São José dos Campos.

American Concrete Institute (ACI). 2010. ACI 212.3R-10: Report for chemical admixtures for concrete. United States.

Sisomphon K, Copuroglu O, Koenders EAB. 2012. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 34(4):566-574. https://doi.org/10.1016/j.cemconcomp.2012.01.005

Takagi EM, Lima MG, Helene P, Medeiros-Junior RA. 2018. Towards the concrete of tomorrow: engineered self-healing concrete with blast furnace slag cement activated by crystalline additive - PRAH 4G (in Portuguese: Rumo ao concreto do amanhã: concreto auto cicatrizante engenheirado com cimento de escória de alto forno ativado por aditivo cristalino - PRAH 4G). Revista Estrutura da Associação Brasileira de Engenharia e Consultoria Estrutural. 5(2):39-45. Retrieved from https://www.phd.eng.br/wp-content/uploads/2018/04/Rev_Estrutural_N_5.pdf.

Pazderca J, Hájková E. 2016. Crystalline admixtures and their effect on selected properties of concrete. Acta Polytechnica. 56(4):306-311. https://doi.org/10.14311/AP.2016.56.0306

Weng TL, Cheng A. 2014. Influence of curing environment on concrete with crystalline admixture. Monatsh. Chem. 145:195-200. https://doi.org/10.1007/s00706-013-0965-z

Hassani ME, Vessalas K, Sirivivatnanon V, Baweja D. 2017. Influence of permeability-reducing admixtures on water penetration in concrete. ACI Mater. J. 114(6):911-922. https://doi.org/10.14359/51701002

De Rooij MR, Schlangen E, Joseph C. 2013. Self-healing phenomena in cement-based materials. Draft of the RILEM State-of-the-Art Report. Retrieved from https://link.springer.com/content/pdf/bfm%3A978-94-007-6624-2%2F1. https://doi.org/10.1007/978-94-007-6624-2_1

Van Tittelboom, K, De Belie, N. 2013. Self-healing in cementitious materials-A review. Materials. 6(6):2182-2217. https://doi.org/10.3390/ma6062182 PMid:28809268 PMCid:PMC5458958

Ferrara L, Krelani V, Carsana M. 2014. A "fracture testing" based approach to assess crack healing of concrete with and without crystalline admixtures. Constr. Build. Mater. 68:535-551. https://doi.org/10.1016/j.conbuildmat.2014.07.008

Nascimento RS, Pereira BCG, Joffily IAL. 2017. The effects of different crystallizing additives on the properties of hardened concrete: capillary water absorption and compressive strength (in Portuguese: Os efeitos de diferentes aditivos cristalizantes nas propriedades do concreto no estado endurecido: absorção de água por capilaridade e resistência à compressão). In: 59th Brazilian Concrete Congress, Rio Grande do Sul. Retrieved from https://www.researchgate.net/publication/326819517_os_efeitos_de_diferentes_aditivos_cristalizantes_nas_propriedades_do_concreto_no_estado_fresco_e_endurecido.

Petrucci RSP, Hastenpflug D. 2017. Influence of the crystallizing additive on the porosity of Portland cement concrete (in Portuguese: Influência do aditivo cristalizante na porosidade do concertos de Cement Portland). In: 59th Brasiliano Concrete Congress, Rio Grande do Sul.

Helene P, Guignone G, Vieira G, Roncetti L, Moroni F. 2018. Evaluation of colorido penetra íon and service life of self healing concrete activated by a crystalline admixture (in Portuguese: Avaliação da penetração de cloretos e da vida útil de concretos autocicatrizantes ativados por aditivo cristalino). Revista IBRACON de Estruturas e Materiais. 11(3):544-563. https://doi.org/10.1590/s1983-41952018000300007

Li D, Chen B, Chen X, Fu B, Wei H, Xiang X. 2020. Synergetic effect of superabsorbent polymer (SAP. and crystalline admixture (CA. on mortar macro-crack healing. Constr. Build. Mater. 247:118521. https://doi.org/10.1016/j.conbuildmat.2020.118521

Cuenca E, Tejedor A, Ferrara L. 2018. A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr. Build. Mater. 179:619-632. https://doi.org/10.1016/j.conbuildmat.2018.05.261

Cuenca E, Messene A, Ferrara L. 2021. Synergy between crystalline admixtures and nano-constituents in enhancing autogenous healing capacity of cementitious composites under cracking and healing cycles in aggressive waters. Constr. Build. Mater. 266:121447. https://doi.org/10.1016/j.conbuildmat.2020.121447

Roig-Flores M, Moscato S, Serna P, Ferrara L. 2015. Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 86:1-11. https://doi.org/10.1016/j.conbuildmat.2015.03.091

Vieira DV, Damasio AS. 2017. Self-healing concrete using Brazilian Portland pozzolan cements, activated by a crystalline admixture (in Portuguese: Concertos auto vicariate com uso de cimentos Portland brasileiros de pozolana, ativados por aditivo cristalino. In: 59th Brazilian Concrete Congress, Rio Grande do Sul.

Escoffres P, Desmettre C, Charron JP. 2018. Effect of a crystalline admixture on the self-healing capability of high performance fiber reinforced concretes in service conditions. Constr. Build. Mater. 173:763-774. https://doi.org/10.1016/j.conbuildmat.2018.04.003

Ourives CN, Bilesky PC, Yokoyama CM. 2009. Performance evaluation of concrete capillary crystallization waterproofing systems (in Portuguese: Avaliação do desempenho dos sistemas de impermeabilização por cristalização capilar do concreto). Revista IBRACON.

Marchioni ML. 2012. Development of techniques for the characterization of dry concrete used in the manufacture of concrete pieces for interlocking paving (in Portuguese: Desenvolvimento de técnicas para a caracterização do concreto seco utilizado na fabricação de peças de concreto para pavimentação intertravada). Dissertation - Escola Politécnica da Universidade de São Paulo, São Paulo. Retrieved from https://www.teses.usp.br/teses/disponiveis/3/3146/tde-18072013 150832/en.php.

Associação Brasileira de Normas Técnicas (ABNT). Brazilian Technical Standards Association. 2014. NBR 6136: Simple hollow concrete blocks for masonry: requirements (in Portuguese: blocos vazados de concreto simples para alvenaria: requisitos), Rio de Janeiro.

Marques DO. 2017. Modular microconcrete blocks incorporating waste and synthetic polypropylene fibers (in Portuguese: Blocos modulares de microconcreto com incorporação de resíduos e fibras sintéticas de polipropileno). Undergraduate thesis. Escola de Engenharia Civil da Universidade Federal de Goiás. Goiânia.

ABNT. 2018. NBR 16697: Portland cement - Requirements (in Portuguese: Cimento Portland - Requisitos). Rio de Janeiro.

ABNT. 2017. NBR 16605: Portland cement and other powdered materials - Determination of specific mass (in Portuguese: Cimento Portland e outros materiais em pó - Determinação da massa específica). Rio de Janeiro.

UNE - Spanish Standard. 2013. UNE 80103 Test methods of cements. Physical analysis. Actual density determination.

ABNT. 2018. NBR 16606: Portland cement - Determination of normal consistency paste (in Portuguese: Cimento Portland - Determinação da pasta de consistência normal). Rio de Janeiro.

EN - European Standard. 2016. - EN 196-3: Methods of testing cement - Part 3: Determination of setting times and soundness.

ABNT. 2012. NBR NM 18: Portland cement - Chemical analysis - Determination of ignition loss (in Portuguese: Cimento Portland - Análise química - Determinação de perda ao fogo). Rio de Janeiro.

EN - European Standard. 2013. EN 196-2: Methods of testing cement - Part 2: Chemical analysis of cement.

ABNT. 2012. NBR NM 15: Portland cement - Chemical analysis - Determination of insoluble residue (in Portuguese: Cimento Portland - Análise química - Determinação de resíduo insolúvel). Rio de Janeiro.

ABNT. 2012. NBR NM 11-2: Portland cement - Chemical analysis - Determination of major oxides for complexometry - Part 2: ABNT method (in Portuguese: Cimento Portland - Análise química - Determinação de óxidos principais por complexometria - Parte 2: Método ABNT). Rio de Janeiro.

ABNT. 2012. NBR NM 16: Portland cement - Chemical analysis - Determination of sulfuric anhydride (in Portuguese: Cimento Portland - Análise química - Determinação de anidrido sulfúrico). Rio de Janeiro.

ABNT. 2012. NBR 11579: Portland cement - Determination of the fineness index by means of 75 μm sieve (nº 200. In Portuguese: Cimento Portland - Determinação do índice de finura por meio da peneira 75 μm (nº 200). Rio de Janeiro.

ABNT. 2014. NBR 12826: Portland cement and other powdered materials - Determination of fineness index by means of aerodynamic sieving (in Portuguese: Cimento Portland e outros materiais em pó - Determinação do índice de finura por meio de peneirador aerodinâmico). Rio de Janeiro.

ABNT. 2015. NBR 16372: Portland cement and other powdered materials - Determination of fineness by the air permeability method (Blaine method. in Portuguese: Cimento Portland e outros materiais em pó - Determinação da finura pelo método de permeabilidade ao ar (método de Blaine)). Rio de Janeiro.

EN - European Standard. 2018. EN 196-6: Methods of testing cement - Part 6: Determination of fineness.

ABNT. 2018. NBR 16607: Portland cement - Determination of setting times (in Portuguese: Cimento Portland - Determinação dos tempos de pega). Rio de Janeiro.

ABNT. 2019. NBR 7215: Portland cement - Determination of compressive strength of cylindrical specimens (in Portuguese: Cimento Portland - Determinação da resistência à compressão de corpos de prova cilíndricos). Rio de Janeiro.

EN - European Standard. 2016. EN 196-1: Methods of testing cement - Part 1: Determination of strength.

ABNT. 2003. NBR NM 248: Aggregates - Determination of particle size composition (in Portuguese: Agregados - Determinação da composição granulométrica). Rio de Janeiro.

EN - European Standard 2012. EN 933-1: Tests for geometrical properties of aggregates - Part 1: Determination of particle size distribution - Sieving method.

ABNT. 2009. NBR NM 52: Aggregate - Determination of specific mass and apparent specific mass (in Portuguese: Agregado miúdo - Determinação da massa específica e massa específica aparente). Rio de Janeiro.

BS - British Standard. 1995. BS 812-2: Testing aggregates - Part 2: Methods for determination of density.

ABNT. 2009. NBR 7211: Aggregates for concrete - Specification (in Portuguese: Agregados para concreto - Especificação). Rio de Janeiro.

SIKA. Product datasheet - Sika® WT-200P, (2017). Retrieved from https://gcc.sika.com/en/documents resources/pds.html.

ABNT. 2016. NBR 7182: Soil-compaction test (in Portuguese: Solo - ensaio de compactação). Rio de Janeiro.

ABNT. 2018. NBR 5739: Concrete - Compression tests of cylindrical specimens (in Portuguese: Concreto - Ensaios de compressão de corpos-de-prova cilíndricos). Rio de Janeiro.

ABNT. 2009. NBR 9778: Hardened mortar and concrete - Determination of water absorption, void index and specific mass (in Portuguese: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica). Rio de Janeiro, 2005. Versão corrigida 2.

Reddy TCS, Ravitheja A. 2019. Macro mechanical properties of self-healing concrete with crystalline admixture under different environments. Ain Shams Eng. J. 10(1):23-32. https://doi.org/10.1016/j.asej.2018.01.005

Mehta PK, Monteiro PJM. 2014. Concrete: microstructure, properties, and materials. McGraw-Hill Education.

ABNT. 2015. NBR 8953: Concrete for structural use - Density, strength, and consistency classification (in Portuguese: Concreto para fins estruturais - Classificação pela massa específica, por grupos de resistência e consistência). Rio de Janeiro.

Published

2024-03-14

How to Cite

Lopes, R. C., Bacarji, G. W. ., Bacarji, E. ., & Oliveira, A. . (2024). Influence of crystallizing type chemical admixture on precast micro concretes: a statistical analysis and holistic engineering overview. Materiales De Construcción, 74(353), e336. https://doi.org/10.3989/mc.2024.352323

Issue

Section

Research Articles