Aspectos estructurales del hormigón que incorpora áridos gruesos reciclados de residuos de construcción y demolición
DOI:
https://doi.org/10.3989/mc.2024.360023Palabras clave:
Árido, Hormigón, Productos de hidratación, Formación de etringita, Cemento portlandResumen
Este estudio explora el potencial del reciclaje de residuos de construcción y demolición en áridos gruesos reciclados (RCA) para reducir la generación de desechos y la huella de carbono, utilizando un esfuerzo de compactación estándar para calcular la resistencia a la compresión y la densidad de empaquetado de partículas en un volumen cilíndrico específico. La investigación evalúa el impacto del RCA en la trabajabilidad, resistencia a la compresión, resistencia a flexión, tensión por flexión, retracción por secado, resistividad eléctrica, penetración rápida de cloruro y características microestructurales utilizando XRD, SEM y EDAX. Los resultados muestran que aumentar el porcentaje de reemplazo más allá del valor óptimo (RCA 25) tiene efectos perjudiciales en la resistencia y microestructura del hormigón. El RCA 25 tiene una resistencia a la compresión, a flexión y tracción superior en un 11.56%, 3.06% y 5.17%, respectivamente, en comparación con el hormigón de referencia. Además, presenta un aumento del 5.23% en la retracción por secado, una resistividad eléctrica un 8.79% mayor y una resistencia a la penetración de cloruros un 4.68% superior al hormigón.
Descargas
Citas
Lokeshwari M, Swamy CN. 2011. Sustainable development through recycling of construction and demolition wastes in India. Nat. Environ. Pollut. Technol. An. Int. Q. Sci. J. 10(01):27-32. Retrieved from www.neptjournal.com.
Marinković S, Josa I, Braymand S, Tošić N. 2023. Sustainability assessment of recycled aggregate concrete structures: A critical view on the current state-of-knowledge and practice. Struct. Concr. 24(2):1956-1979. https://doi.org/10.1002/suco.202201245
Kaza S, Yao L, Bhada-Tata P, Van Woerden F. 2018. What a waste 2.0 introduction -snapshot of solid waste management to 2050. Overview booklet. Urban Dev. Ser. 1-38. https://doi.org/10.1596/978-1-4648-1329-0_ch1
Ahmed SFU. 2013. Properties of concrete containing construction and demolition wastes and fly ash. J. Mater. Civ. Eng. 25(12):1864-1870. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000763
Taffese WZ. 2018. Suitability investigation of recycled concrete aggregates for concrete production: an experimental case study. Adv. Civ. Eng. 2018:8368351. https://doi.org/10.1155/2018/8368351
Asif H, Assas MM. 2013. Utilization of demolished concrete waste for new construction. Int. J. Civil. Environ. Struct. Constr. Archit. Eng. 07(01):37-42. Retrieved from: https://www.researchgate.net/publication/292770154.
Pedro D, de Brito J, Evangelista L. 2017. Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical durability and long-term properties. Constr. Build. Mater. 154:294-309. https://doi.org/10.1016/j.conbuildmat.2017.07.215
Yu Y, Wang P, Yu Z, Yue G, Wang L, Guo Y. 2021. Study on the effect of recycled coarse aggregate on the shrinkage performance of green recycled concrete. Sustain. 13(23):13200. https://doi.org/10.3390/su132313200
Kurda R, de Brito J, Silvestre JD. 2018. Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cem. Concr. Compos. 95:169-182. https://doi.org/10.1016/j.cemconcomp.2018.10.004
Whiting D, Mitchell TM. 1992. History of the rapid chloride permeability test. Transp. Res. Rec. 1335(1):55-62.
Ke Y, Ortola S, Beaucour AL, Dumontet H. 2010. Identification of microstructural characteristics in lightweight aggregate concretes by micromechanical modelling including the Interfacial Transition Zone (ITZ). Cem. Concr. Res. 40(11):1590-1600. https://doi.org/10.1016/j.cemconres.2010.07.001
Tremper B, Spellman DC. 1963. Shrinkage of concrete-comparison of laboratory and field performance. Highw. Res. Rec. 3:30-61. Retrieved from http://onlinepubs.trb.org/Onlinepubs/hrr/1963/3/3-003.pdf.
Hansson ILH, Hansson CM. 1983. Electrical resistivity measurements of Portland cement based materials. Cem. Concr. Res. 13(5):675-683. https://doi.org/10.1016/0008-8846(83)90057-1
Morris W, Moreno EI, Sagües AA. 1996. Practical evaluation of resistivity of concrete in test cylinders using a wenner array probe. Cem. Concr. Res. 26(12): 1779-1787. https://doi.org/10.1016/S0008-8846(96)00175-5
Malešev M, Radonjanin V, Marinković S. 2011. Recycled concrete as aggregate for structural concrete production. Sustainability. 3(2):465-468. https://doi.org/10.3390/su3020465
Madan Mohan Reddy K, Bhavani R, Ajitha B. 2012. Local construction and demolition waste used as coarse aggregates in concrete. Int. J. Eng. Res. Appl. (IJERA). 2(5):1236-1238. Retrieved from https://www.ijera.com/papers/Vol2_issue5/GT2512361238.pdf.
Whiting B, McCarthy T, Lume E. 2013. Drying shrinkage of concrete made from recycled concrete aggregate. From Mater. Struct. Adv. through Innov. Proc 22nd Australas Conf. Mech. Struct. Mater. ACMSM 2012. 2013:1199-204. https://doi.org/10.1201/b15320-213
Monish M, Srivastava V, Agarwal VC, Mehta PK, Kumar R. 2013. Demolished waste as coarse aggregate in concrete. J. Acad. Indus. Res. 1(9):540.
Iffat S, Emon AB, Manzur T, Ahmad SI. 2014. An experiment on durability test RCPT. of concrete according to ASTM standard method using low-cost equipments. Adv. Mater. Res. 974:335-340. https://doi.org/10.4028/www.scientific.net/AMR.974.335
Özalp F, Yilmaz HD, Kara M, Kaya Ö, Şahin A. 2016. Effects of recycled aggregates from construction and demolition wastes on mechanical and permeability properties of paving stone kerb and concrete pipes. Constr. Build. Mater. 110:17-23. https://doi.org/10.1016/j.conbuildmat.2016.01.030
Wang H, Sun X, Wang J, Monteiro PJM. 2016. Permeability of concrete with recycled concrete aggregate and pozzolanic materials under stress. Materials. 9(4):252. https://doi.org/10.3390/ma9040252 PMid:28773376 PMCid:PMC5502916
Raihan R, Vajid A, Sabik M. 2017. Demolished waste concrete powder as partial replacement of cement. Int. J. Res. Eng. Technol. 6(4):56-59. https://doi.org/10.15623/ijret.2017.0604013
Mishra RK, Tripathi RK. 2017. Early age strength and electrical resistivity of concrete as durability indicator through maturity. Int. J. Earth. Sci. Eng. 10(3):677-82.
Babu MS, Kumar TS. 2018. Study on drying shrinkage of ternary blended concrete by partial replacement of cement with china clay and fly ash. Int. J. Eng. Technol. 7(4.28):559-562. Retrieved from https://www.sciencepubco.com/index.php/ijet/article/view/25387/12952.
Gupta V, Patel A, Dubey G, Choudhary J, Gupta R, Dhawade S. 2018. Experimental investigation of concrete on replacement of aggregates with demolished. Int. Adv. Res. J. Sci. Eng. Technol. 5(3):190-197. Retrieved from https://iarjset.com/wp content/uploads/2018/07/ICACE-18-101.pdf.
Zheng C, Lou C, Du G, Li X, Liu Z, Li L. 2018. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results Phys. 9:1317 1322. https://doi.org/10.1016/j.rinp.2018.04.061
Dhapekar NK, Mishra SP. 2018. Efficient utilization of construction and demolition waste in concrete. urban challenges emerg econimics. Proceedings. ASCE India Conference 2017. Urbanization challenges in emerging economies. 216-226. https://doi.org/10.1061/9780784482032.023
Choi SY, Kim IS, Yang EI. 2020. Comparison of drying shrinkage of concrete specimens recycled heavyweight waste glass and steel slag as aggregate. Materials. 13(22):5084. https://doi.org/10.3390/ma13225084 PMid:33187220 PMCid:PMC7697991
Azba AH, Alnuman BS. 2021. Strength and electrical resistivity of recycled concrete made of aggregates from waste bricks. Proc. 7th Int. Eng. Conf. Research Innov. Amid. Glob. Pandemic IEC 2021. 96-100. https://doi.org/10.1109/IEC52205.2021.9476139
Panghal H, Kumar A. 2023. Effects of surface modified recycled coarse aggregates on concrete's mechanical characteristics. Mater. Res. Express. 10(9):095506. https://doi.org/10.1088/2053-1591/acf915
IS:269 IS: 269-2015. 2017. Ordinary portland c ement indian standard New Delhi. 41(December 2015).
IS:383; 2016. 2016. Coarse and fine aggregate for concrete -- Specification. Bur Indian Stand New Delhi India. 19(January).
IS 2386- Part III 1963. 2021. Methods of test for aggregates for concrete. Bur Indian Stand New Delhi India. Reaffirmed 2021.
IS: 2386; Part IV. 1963. 2021. Methods of test for aggregates for concrete. Bur Indian Stand New Delhi. 2366 (Reaffirmed 2021).
IS 9103. 1999. Specification for concrete admixtures. Bur Indian Stand Dehli. 1-22.
IS 1199. 1959. Methods of sampling and analysis of concrete. Bur Indian Stand. 1-49.
IS 516 Part 6. 2020. Determination of drying shrinkage and moisture movement of concrete samples. Burau Indian Stand. 516(June). Retrieved from: www.standardsbis.in.
Polder R. 2000. RILEM TC 154 EMC: Electrochemical technique for measuring metallic corrosion. Mater. Struct. 33:603-611. https://doi.org/10.1007/BF02480599
ASTM C1202. 2012. Standard test method for electrical indication of concrete's ability to resist chloride ion penetration. Am. Soc. Test Mater. 2012(C):1-8.
Shahidan S, Azmi MAM, Kupusamy K, Zuki SSM, Ali N. 2017. Utilizing construction and demolition (C&D) waste as recycled aggregates (RA) in concrete. Procedia Engineering. 174:1028-1035. https://doi.org/10.1016/j.proeng.2017.01.255
Kessal O, Belagraa L, Noui A, Maafi N. 2020. Performance study of eco-concrete based on waste demolition as recycled aggregates. Mater. Int. 2(2):123-130. https://doi.org/10.33263/Materials22.123130
Ankesh SB, Venugopal ML, Sumanth S, Vinodkumar, Abhishek BS. 2020. Experimental study on concrete blocks from recycled aggregates. Int. Res. J. Eng. Technol. 7(8):277-288. Retrieved from https://www.irjet.net/archives/V7/i8/IRJET-V7I847.pdf.
Avindana J, Kumar Mittal S, Dhapekar NK. 2017. Applicability of construction and demolition waste concrete in construction sector-review. Int. J. Civ. Eng. Res. 8(2): 131-138. Retrieved from: https://www.ripublication.com/ijcer17/ijcerv8n2_05.pdf.
Surya M, Rao VVLK, Lakshmy P. 2013. Recycled aggregate concrete for transportation infrastructure. Procedia Soc. Behav. Sci. 104:1158-1167. https://doi.org/10.1016/j.sbspro.2013.11.212
Kioumarsi M, Azarhomayun F, Haji M, Shekarchi M. 2020. Effect of shrinkage reducing admixture on drying shrinkage of concrete with different W/C ratios. Materials. 13(24):5721. https://doi.org/10.3390/ma13245721 PMid:33333959 PMCid:PMC7765446
Arredondo-Rea SP, Corral-Higuera R, Gómez-Soberón JM, Gámez-García DC, Bernal Camacho JM, Rosas-Casarez CA. 2019. Durability parameters of reinforced recycled aggregate concrete: case study. Appl. Sci. 9(4):617. https://doi.org/10.3390/app9040617
Yang S, Lee H. 2021. Drying shrinkage and rapid chloride penetration resistance of recycled aggregate concretes using cement paste dissociation agent. Materials. 14(6):1478. https://doi.org/10.3390/ma14061478 PMid:33803045 PMCid:PMC8003028
Joseph HS, Pachiappan T, Avudaiappan S, Flores EIS. 2022. A study on mechanical and microstructural characteristics of concrete using recycled aggregate. Materials. 15(21):7535 https://doi.org/10.3390/ma15217535 PMid:36363128 PMCid:PMC9656599
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.