Hormigón celular tratado en autoclave reforzado por pasadores poliméricos
DOI:
https://doi.org/10.3989/mc.2024.370623Palabras clave:
Hormigón celular tratado en autoclave, Pasador de poliéster, Interfaz, Peso ligeroResumen
Hormigón celular tratado en autoclave (AAC) es un material de construcción ligero y sostenible conocido por sus propiedades de aislamiento térmico y acústico. Sin embargo, su resistencia mecánica relativamente baja limita su uso en aplicaciones de carga. Este estudio introduce el concepto de incorporar pasadores de resina de poliéster insaturado (UPR) en bloques de AAC para mejorar la resistencia a la compresión y flexión del material. Se estudiaron diámetros de pasadores de 4, 6, 8 y 10 mm, orientados a 90° y 45° en relación al plano principal del AAC. Los efectos de la interfaz UPR/AAC fueron analizados a través de microscopía. Los resultados indican un aumento sustancial en la resistencia mecánica del AAC reforzado, donde los pasadores más pequeños con orientación de 45° (hasta un 298%) y 90° (hasta un 183%) presentaron el mejor comportamiento sobre esfuerzos de flexión y compresión, respectivamente.
Descargas
Citas
Kalpana M, Mohith S. 2020. Study on autoclaved aerated concrete: Review. Mater. Today Proc. 22(3): 894-896. https://doi.org/10.1016/j.matpr.2019.11.099
He T, Xu R, Chen C, Yang L, Yang R, Da Y. 2018. Carbonation modeling analysis on carbonation behavior of sand autoclaved aerated concrete. Constr. Build. Mater. 189: 102-108. https://doi.org/10.1016/j.conbuildmat.2018.08.199
Abhilasha, Kumar R, Lakhani R, Mishra RK, Khan S. 2023. Utilization of solid waste in the production of autoclaved aerated concrete and their effects on its physio-mechanical and microstructural properties: alternative sources characterization and performance insights. Int. J. Concr. Struct. Mater. 17(6). https://doi.org/10.1186/s40069-022-00569-x
Yusrianto E, Marsi N, Kassim N, ManafI A, Shariff HH. 2022. Acoustic properties of autoclaved aerated concrete (AAC) based on Gypsum-Ceramic Waste (GCW). Int. J. Integr. Eng. 14(8): 67-76. https://doi.org/10.30880/ijie.2022.14.08.009
Emelianov S, Bulgakov A, Otto J, Avakyan A, Protsenko K, Skibin G, Mikheev A. 2023. Fast-hardening slag-alkaline heat-resistant aerated concrete of increased heat resistance with additives of fly ash of novocherkassk SDPP. 149-164. https://doi.org/10.1007/978-3-031-12703-8_16
Narayanan N, Ramamurthy K. 2000. Structure and properties of aerated concrete: a review. Cem. Concr. Compos. 22(5): 321-329. https://doi.org/10.1016/S0958-9465(00)00016-0
Xu C, Nehdi ML, Wang K, Guo Y. 2021. Experimental study on seismic behavior of novel AAC prefabricated panel walls. J. Build. Eng. 44: 103390. https://doi.org/10.1016/j.jobe.2021.103390
Halici OF, Demir U, Zabbar Y, Ilki A. 2023. Out-of-plane seismic performance of bed-joint reinforced autoclaved aerated concrete (AAC) infill walls damaged under cyclic in-plane displacement reversals. Eng. Struct. 286: 116077. https://doi.org/10.1016/j.engstruct.2023.116077
Sedaghat A, Soleimani SM, Al-Khiami MI, Sabati M, Rasul M, Narayanan R, Khan MMK. 2023. Development of a novel low-energy building: effects of room orientation and wall materials. Key Eng. Mater. 945: 101-108. https://doi.org/10.4028/p-26jy0u
Gokmen F, Binici B, Aldemir A, Taghipour A, Canbay E. 2019. Seismic behavior of autoclaved aerated concrete low rise buildings with reinforced wall panels. Bull. Earthq. Eng. 17: 3933-3957. https://doi.org/10.1007/s10518-019-00630-3
Goodier C, Cavalaro S, Lee K, Casselden R. 2022. Durability variations in reinforced autoclaved aerated concrete (RAAC). Extended Abstract. MATEC Web Conf. 361: 06005. https://doi.org/10.1051/matecconf/202236106005
Choi SJ, Bae SH, Lee JI, Bang EJ, Ko HM. 2021. Strength carbonation resistance and chloride-ion penetrability of cement mortars containing catechol-functionalized chitosan polymer. Materials (Basel). 14(21): 6395. https://doi.org/10.3390/ma14216395 PMid:34771921 PMCid:PMC8585477
Patil A, Patel A, Purohit R. 2017. An overview of polymeric materials for automotive applications. Mater. Today Proc. 4(2) Part A: 3807-3815. https://doi.org/10.1016/j.matpr.2017.02.278
Philips DS, Nair AB. 2023. Unsaturated polyester resins and their classification. In applications of unsaturated polyester resins. Elsevier. 17-24. https://doi.org/10.1016/B978-0-323-99466-8.00019-8
Sarde B, Patil YD. 2019. Recent research status on polymer composite used in concrete-an overview. Mater. Today Proc. 18(7): 3780-3790. https://doi.org/10.1016/j.matpr.2019.07.316
Ramesh Kumar GB, Rishab Narayanan V. 2020. A review on polymer impregnated concrete using steel wire mesh. Mater. Today Proc. 33(1): 338-344. https://doi.org/10.1016/j.matpr.2020.04.118
Almusallam AA, Khan FM, Dulaijan SU, Al-Amoudi OSB. 2003. Effectiveness of surface coatings in improving concrete durability. Cem. Concr. Compos. 25(4-5): 473-481. https://doi.org/10.1016/S0958-9465(02)00087-2
Liu J, Vipulanandan C. 2001. Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack. tunn. Undergr. Sp. Technol. 16(4): 311-321. https://doi.org/10.1016/S0886-7798(01)00053-0
Nodehi M. 2022. Epoxy polyester and vinyl ester based polymer concrete: A review. Innov. Infrastruct. Solut. 7: 64. https://doi.org/10.1007/s41062-021-00661-3
Chi J, Zhang G, Xie Q, Ma C, Zhang G. 2020. High performance epoxy coating with cross-linkable solvent via diels-alder reaction for anti-corrosion of concrete. Prog. Org. Coatings. 139: 105473. https://doi.org/10.1016/j.porgcoat.2019.105473
Zheng Y, Xiao J, Duan M, Li Y. 2014. Experimental study of partially-cured z-pins reinforced foam core composites: K-Cor sandwich structures. Chinese J. Aeronaut. 27(1): 153-159. https://doi.org/10.1016/j.cja.2013.07.016
Fojtl L, Manas L, Rusnakova S. 2018. The effect of polymer pin ribs on reinforcement of sandwich structures. Manuf. Technol. 18(6): 889-894. https://doi.org/10.21062/ujep/196.2018/a/1213-2489/MT/18/6/889
Kaya G, Selver E. 2019. Impact resistance of z-pin-reinforced sandwich composites. J. Compos. Mater. 53(26-27): 3681-3699. https://doi.org/10.1177/0021998319845428
Balıkoğlu F, Demircioğlu TK, Yıldız M, Arslan N, Ataş A. 2020. Mechanical performance of marine sandwich composites subjected to flatwise compression and flexural loading: effect of resin pins. J. Sandw. Struct. Mater. 22(6): 2030-2048. https://doi.org/10.1177/1099636218792671
Yalkin HE, Icten BM, Alpyildiz T. 2015. Enhanced mechanical performance of foam core sandwich composites with through the thickness reinforced core. Compos. Part B Eng. 79: 383-391. https://doi.org/10.1016/j.compositesb.2015.04.055
Rice MC, Fleischer CA, Zupan M. 2006. Study on the collapse of pin-reinforced foam sandwich panel cores. Exp. Mech. 46: 197-204. https://doi.org/10.1007/s11340-006-7103-3
Zuoguang Z, Jijun H, Min L, Yizuo G, Zhijie S. 2009. Mechanical performance of x-truss/foam sandwich construction. J. Reinf. Plast. Compos. 28(21): 2631-2643. https://doi.org/10.1177/0731684408093319
Wang Q, Chen Y, Li F, Sun T, Xu B. 2006. Microstructure and properties of silty siliceous crushed stone-lime aerated concrete. J. Wuhan Univ. Technol. Mater. Sci. Ed. 21: 17-20. https://doi.org/10.1007/BF02840830
Qu X, Zhao X. 2017. Previous and present investigations on the components microstructure and main properties of autoclaved aerated concrete: a review. Constr. Build. Mater. 135: 505-516. https://doi.org/10.1016/j.conbuildmat.2016.12.208
Chen G, Li F, Geng J, Jing P, Si Z. 2021. Identification generation of autoclaved aerated concrete pore structure and simulation of its influence on thermal conductivity. Constr. Build. Mater. 294: 123572. https://doi.org/10.1016/j.conbuildmat.2021.123572
Devi NR, Dhir PK, Sarkar P. 2022. Influence of strain rate on the mechanical properties of autoclaved aerated concrete. J. Build. Eng. 57: 104830. https://doi.org/10.1016/j.jobe.2022.104830
Laukaitis A, Fiks B. 2006. Acoustical properties of aerated autoclaved concrete. Appl. Acoust. 67(3): 284-296. https://doi.org/10.1016/j.apacoust.2005.07.003
Selver E, Kaya G, Dalfi H. 2021. Experimental and theoretical study of sandwich composites with z-pins under quasi-static compression loading. Adv. Struct. Eng. 24(12): 2720-2734. https://doi.org/10.1177/13694332211007399
Raeisi S, Kadkhodapour J, Tovar A. 2019. Mechanical properties and energy absorbing capabilities of z-pinned aluminum foam sandwich. Compos. Struct. 214: 34-46. https://doi.org/10.1016/j.compstruct.2019.01.095
Nanayakkara AM, Feih S, Mouritz AP. 2013. Improving the fracture resistance of sandwich composite T-Joints by Z-Pinning. Compos. Struct.96: 207-215. https://doi.org/10.1016/j.compstruct.2012.09.029
Kocher C, Watson W, Gomez M, Gonzalez I, Birman V. 2001. Integrity of multi-skin sandwich panels and beams with truss-reinforced cores. 19th AIAA Appl. Aerodyn. Conf. 111-117. https://doi.org/10.2514/6.2001-1636 PMCid:PMC2374102
Xu R, He T, Da Y, Liu Y, Li J, Chen C. 2019. Utilizing wood fiber produced with wood waste to reinforce autoclaved aerated concrete. Constr. Build. Mater. 208: 242-249. https://doi.org/10.1016/j.conbuildmat.2019.03.030
Huang F, Zhang J, Zheng X, Wu Y, Fu T, Easa S, Liu W, Qiu R. 2022. Preparation and performance of autoclaved aerated concrete reinforced by dopamine-modified polyethylene terephthalate waste fibers. Constr. Build. Mater. 348: 128649. https://doi.org/10.1016/j.conbuildmat.2022.128649
Onur Pehlivanlı Z, Uzun İ. 2022. Effect of polypropylene fiber length on mechanical and thermal properties of autoclaved aerated concrete. Constr. Build. Mater. 322: 126506. https://doi.org/10.1016/j.conbuildmat.2022.126506
Wisnom MR, Hallett SR. 2009. The role of delamination in strength failure mechanism and hole size effect in open hole tensile tests on quasi-isotropic laminates. Compos. Part A Appl. Sci. Manuf. 40(4): 335-342. https://doi.org/10.1016/j.compositesa.2008.12.013
Ghasemi AR, Moradi M. 2017. Effect of thermal cycling and open-hole size on mechanical properties of polymer matrix composites. Polym. Test. 59: 20-28. https://doi.org/10.1016/j.polymertesting.2017.01.013
Xu L, Lee LJ. 2004. Effect of nanoclay on shrinkage control of low profile Unsaturated Polyester (UP). Resin cured at room temperature. Polymer (Guildf). 45(21): 7325-7334. https://doi.org/10.1016/j.polymer.2004.08.051
Gao Y, Zhang H, Huang M, Lai F. 2019. Unsaturated polyester resin concrete: a review. Constr. Build. Mater. 228: 116709. https://doi.org/10.1016/j.conbuildmat.2019.116709
Hill RR, Muzumdar SV, Lee LJ. 1995. Analysis of volumetric changes of unsaturated polyester resins during curing. Polym. Eng. Sci. 35(10): 852-859. https://doi.org/10.1002/pen.760351007
Aldrighetti C, Tassone P, Ciardelli F, Ruggeri G. 2005. Reduction of the thermal expansion of unsaturated polyesters by chain-end modification. Polym. Degrad. Stab. 90(2): 346-353. https://doi.org/10.1016/j.polymdegradstab.2005.01.042
Chieruzzi M, Miliozzi A, Kenny JM. 2013. Effects of the nanoparticles on the thermal expansion and mechanical properties of unsaturated polyester/clay nanocomposites. Compos. Part A Appl. Sci. Manuf. 45: 44-48. https://doi.org/10.1016/j.compositesa.2012.09.016
Ullrich A, Garbev K, Bergfeldt B. 2021. In situ x-ray diffraction at high temperatures: formation of Ca2sio4 and Ternesite in recycled autoclaved aerated concrete. Minerals. 11(8): 789. https://doi.org/10.3390/min11080789
Jerman M, Keppert M, Výborný J, Černý R. 2013. Hygric thermal and durability properties of autoclaved aerated concrete. Constr. Build. Mater. 41: 352-359. https://doi.org/10.1016/j.conbuildmat.2012.12.036
Pehlivanli ZO, Uzun I, Demir I. 2015. Mechanical and microstructural features of autoclaved aerated concrete reinforced with autoclaved polypropylene carbon basalt and glass fiber. Constr. Build. Mater. 96: 428-433. https://doi.org/10.1016/j.conbuildmat.2015.08.104
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.