Incorporation of spent bleaching earth and glass sediment as an alternative raw material for the manufacture of eco-products based on fired clay

Authors

DOI:

https://doi.org/10.3989/mc.2024.373524

Keywords:

glass sediment, clay, industrial waste, eco-product, Spent bleaching earth

Abstract


This study explores the use of two industrial residues: spent bleaching earth (SBE) and glass sediment (GS), as alternative raw materials in the production of ceramic materials from fired clay. The mixtures incorporating 0%, 10%, 30%, and 50% by weight of these residues, were examined. The impact of quantity and type of waste on product properties (density, water absorption, compressive strength, and thermal conductivity) was assessed against NTC 4205 standards. Incorporating 50% SBE reduced thermal conductivity by 35%, but increased porosity affected compressive strength. Glass sediment incorporation increased thermal conductivity but surpassed pure clay in mechanical behavior. The triphasic mix (20% GS, 10% SBE with lime) demonstrated optimal mechanical performance, meeting fired clay masonry unit standards. An eco-product prototype based on this mix was successfully manufactured, affirming that industrial waste is a viable alternative raw material, yielding ceramic materials with properties meeting or surpassing Colombian construction industry standards.

Downloads

Download data is not yet available.

References

Eliche-Quesada D, Corpas-Iglesias FA. 2014. Utilisation of spent filtration earth or spent bleaching earth from the oil refinery industry in clay products. Ceram. Int. 40(10, B): 16677-16687. https://doi.org/10.1016/j.ceramint.2014.08.030

Ramu N, Chaitanya K. 2020. Cost reduction of strengthen bricks by using construction waste materials. Paideuma J. 13(7):250-256. Retrieved from: https://diet.edu.in/cmoon_images/ce1._nanubilli_ramu__k.chaitanya.pdf

Ncube A, Matsika R, Mangori L, Ulgiati S. 2021. Moving towards resource efficiency and circular economy in the brick manufacturing sector in Zimbabwe. J. Clean. Prod. 281: 125238. https://doi.org/10.1016/j.jclepro.2020.125238

M. Mohammad et al. 2022. Physical and mechanical properties of fired industrial waste-clay bricks from clam shells and soda lime silica glass. Mater. Today Proc. 75(1):151-155. https://doi.org/10.1016/j.matpr.2022.10.275

Oliveira YL, Linhares Z, Ancelmo L, Soares RAL. 2016. Estudo da Reutilização de Resíduos de Telha Cerâmica (Chamote) em Formulação de Massa para Blocos Cerâmicos. Cerâmica Ind. 21(2): 45-50. https://doi.org/10.4322/cerind.2016.013

Planelles Aragó J. 2019. La producción en el sector cerámico bajo el prisma de la economía circular. VIGILANCER. (Online). Retrieved from https://www.vigilancer.es/index.php/2019/11/15/la-produccion-en-el-sector-ceramico-bajo-el-prisma-de-la-economia-circular/

Muñoz Velasco P, Morales Ortíz MP, Mendívil Giró M, and Muñoz Velasco L. 2014. Fired clay bricks manufactured by adding wastes as sustainable construction material - A review. Constr. Build. Mater. 63:97-107. https://doi.org/10.1016/j.conbuildmat.2014.03.045

Faria KCP, Holanda JNF. 2016. Thermal behavior of ceramic wall tile pastes bearing solid wastes. J. Therm. Anal. Calorim. 123(2):1119-1127. https://doi.org/10.1007/s10973-015-5039-5

Almeida MI, Simões F, Dias B, Francisco V, Amado A. 2016. Ceramic industry contribution to a circular economy. Congress of Innovation on Sustainable Construction - CINCOS'16, 1-6

Heidari L., Jalili Ghazizade M. 2021. Recycling of spent industrial soil in manufacturing process of clay brick. Process Saf. Environ. Prot. 145: 133-140. https://doi.org/10.1016/j.psep.2020.08.004

Arbelaez OF, Restrepo D, Melina L, Vergara Z, Viviana K. 2022. Innovative use of agro-waste cane bagasse ash and waste glass as cement replacement for green concrete. Cost analysis and carbon dioxide emissions. 379 (2): 134822. https://doi.org/10.1016/j.jclepro.2022.134822

Rivera JF, Cuarán-Cuarán ZI, Vanegas-Bonilla N, Mejía de Gutiérrez R. 2018. Novel use of waste glass powder: Production of geopolymeric tiles. Adv. Powder Technol. 29(12): 3448-3454. https://doi.org/10.1016/j.apt.2018.09.023

Low A, Shamsuddin R, Siyal AA. 2022. Economic analysis of waste minimisation and energy recovery from spent bleaching earth. Clean. Eng. Technol. 7:100418. https://doi.org/10.1016/j.clet.2022.100418

Srisang S, Srisang N. 2021. Recycling spent bleaching earth and oil palm ash to tile production: Impact on properties, utilization, and microstructure. J. Clean. Prod. 294: 126336. https://doi.org/10.1016/j.jclepro.2021.126336

Rahma A, et al.2023. Novel spent bleaching earth industrial waste as low-cost ceramic membranes material: Elaboration and characterization. Mater. Today Proc. 87(2): 136-140. https://doi.org/10.1016/j.matpr.2023.02.387

Chagas Licurgo JS, Fontes Vieira CM, Candido VS, Monteiro SN. 2015. Improvement of clay ceramic properties by glass polishing sludge incorporation. Mater. Sci. Forum. 820: 432437. https://doi.org/10.4028/www.scientific.net/MSF.820.432

Phonphuak N, Kanyakam S, Chindaprasirt P. 2016. Utilization of waste glass to enhance physical-mechanical properties of fired clay brick. J. Clean. Prod. 112(4): 3057-3062. https://doi.org/10.1016/j.jclepro.2015.10.084

Silva RV, de Brito J, Lye CQ, Dhir RK. 2017. The role of glass waste in the production of ceramic-based products and other applications: A review. J. Clean. Prod. 167: 346-364. https://doi.org/10.1016/j.jclepro.2017.08.185

Xin Y, Robert D, Mohajerani A, Tran P, Pramanik BK. 2023. Transformation of waste-contaminated glass dust in sustainable fired clay bricks. Case Stud. Constr. Mater. 18: e01717. https://doi.org/10.1016/j.cscm.2022.e01717

Abdelbasir SM, Shehab AI, Khalek MAA. 2023. Spent bleaching earth; recycling and utilization techniques: A review. Resour. Conserv. Recycl. Adv. 17: 200124 https://doi.org/10.1016/j.rcradv.2022.200124

Saldarriaga JF, Gaviria X, Gene JM, Aguado R. 2022. Improving circular economy by assessing the use of fly ash as a replacement of lime pastes reducing its environmental impact. Process Saf. Environ. Prot. 159: 1008-1018. https://doi.org/10.1016/j.psep.2022.01.074

Departamento Nacional de Planeación. 2016. Documento CONPES 3874: Política Nacional para la Gestión Integral de Residuos Sólidos. Colombia. 73p. Retrieved from https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3874.pdf.

Fořt J, Černý R, 2020. Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios. Waste Manag. 118: 510-520. https://doi.org/10.1016/j.wasman.2020.09.004 PMid:32980730

Jani Y, Hogland W. Waste glass in the production of cement and concrete - A review. 2014. J. Environ. Chem. Eng. 2(3): 1767-1775. https://doi.org/10.1016/j.jece.2014.03.016

Eliche-Quesada D. Corpas-Iglesias FA, Pérez-Villarejo L, Iglesias-Godino FJ. 2012. Recycling of sawdust, spent earth from oil filtration, compost and marble residues for brick manufacturing. Constr. Build. Mater. 34: 275-284. https://doi.org/10.1016/j.conbuildmat.2012.02.079

Eliche-Quesada D, Martínez-Martínez S, Pérez-Villarejo L, Iglesias-Godino FJ, Martínez-García C, Corpas-Iglesias FA. 2012. Valorization of biodiesel production residues in making porous clay brick. Fuel Process. Technol. 103: 166-173. https://doi.org/10.1016/j.fuproc.2011.11.013

Monteiro SN, Vieira CMF. 2014. On the production of fired clay bricks from waste materials: A critical update. Constr. Build. Mater. 68: 599-610. https://doi.org/10.1016/j.conbuildmat.2014.07.006

Barranzuela J. 2014. Proceso productivo de los ladrillos de arcilla producidos en la region piura. Tesis pregrado en Ingeniería Civil, Universidad de Piura, Perú. Retrieved from https://pirhua.udep.edu.pe/backend/api/core/bitstreams/5eea42bf-0da2-43bd-b308-b8eb99ea51a3/content.

ICONTEC, NTC 4017. 2018. Métodos para muestreo y ensayos de unidades de mampostería y otros productos de arcilla.

ASTM International, ASTMC642-13. 2013. Standard test method for density, absorption and voids in hardened concrete.

Zuluaga D, Henao AP, García DF, Rodríguez JE, Hoyos AM, Lopez ME, Gómez C. 2016. Caracterización térmica, química y mineralógica de un tipo de arcilla roja propia de la región andina colombiana, empleada para la producción de ladrillos para construcción. Rev. Colomb. Mater. 9: 53-56.

Muñoz J, Muñoz R, Mancill P, Rodríguez J. 2007. Estudio del procesamiento cerámico de las arcillas de la vereda 'La Codicia' (Guapi, Colombia) para potencializar su uso en la elaboración de piezas cerámicas. Rev. Fac. Ing. 42: 68-78.

Cáceres VI, Sánchez-Molina J, Chaparro-García AL. 2017. Evaluación de arcillas caoliniticas-illiticas provenientes de la formación guayabo del área metropolitana de Cúcuta, Norte de Santander, Colombia. Rev. ION30(1): 117-127. https://doi.org/10.18273/revion.v30n1-2017009

Chaisena A, Rangsriwatananon K. 2004. Effect of thermal and acid treatment on some physico-chemical properties of lamping diatomite. J. Sci. Technol 11:289-299. Retrieved from https://www.thaiscience.info/journals/Article/SJST/10890793.pdf

Ostrooumov M. 2007. Espectrometría infrarroja de reflexión en Mineralogíca Avanzada, Gemelogía y Arqueometría, Instituto de Geofísica, UNAM, México, 2007. Retrieved from https://biblat.unam.mx/hevila/MonografiasdelInstitutodeGeofisica/2007/vol12/1.pdf.

Torres J, Mejía de Gutiérrez R, Castelló R, Vizcayno C. 2011. Análisis comparativo de caolines de diferentes fuentes para la producción de metacaolín. Rev. LatinoAm. Metal. Mater. 31(1):35-43. Retrieved from https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0255-69522011000100006&lng=es&nrm=iso&tlng=es

ICONTEC, NTC 4205-2.2009. Unidades de mampostería de arcilla cocida. Ladrillos y bloques cerámicos. Parte 2: Mampostería no estructural. 1-10.

Singh A, Chandel MK. 2022. Valorization of fine fraction from legacy waste as fired bricks: A step towards circular economy. J. Clean. Prod. 331: 129928. https://doi.org/10.1016/j.jclepro.2021.129918

Wang S, Gainey L, Mackinnon IDR, Allen C, Gu Y, Xi Y. 2023. Thermal behaviors of clay minerals as key components and additives for fired brick properties: A review. J. Build. Eng. 66: 105802. https://doi.org/10.1016/j.jobe.2022.105802

Published

2024-11-04

How to Cite

Montoya-Quesada, E. ., & Mejía-de-Gutiérrez, R. . (2024). Incorporation of spent bleaching earth and glass sediment as an alternative raw material for the manufacture of eco-products based on fired clay. Materiales De Construcción, 74(355), e354. https://doi.org/10.3989/mc.2024.373524

Issue

Section

Research Articles