Addition of sugarcane bagasse fibers and MCM-41 silica nanoparticles synthesized from waste glass and their synergic effect on reinforced concrete properties
DOI:
https://doi.org/10.3989/mc.2025.378824Keywords:
Concrete, NPs from waste glass, Sugarcane bagasse fibers, Fiber-NP-reinforced concrete, supplementary cementitious materialsAbstract
In this study, waste materials such as recycled glass employed to synthesize mesoporous silica nanoparticles (NPs) and/or sugarcane bagasse fiber (SBF) were used to reinforce concrete samples, and their properties were evaluated. The cement additions used in this study were 0.8% NPs (0.8N), 1% SBF (1F), or a combination of the two (0.8N-1F). The addition of 0.8N-1F slightly improved the mechanical performance of concrete and offered the greatest decrease in carbonation, likely because these materials had the fewest permeable voids. The thermodynamic properties at the concrete‒steel interface tended to be reduced when the components were added, and there were marked differences in the corrosion potential and corrosion kinetics in concrete with the addition of SBF and NPs. Each material enhanced the performance properties of concrete, but the combination of both materials had a positive synergistic effect on all the studied properties.
Downloads
References
Andersson R, Stripple H, Gustafsson T, Ljungkrantz C. 2019. Carbonation as a method to improve climate performance for cement based material. Cem. Concr. Res. Pergamon.124:105819.
Borges PC. 2010. Impacto del cambio climático global en la durabilidad y el desarrollo sustentable de las construcciones de concreto ¿Qué es el Calentamiento Global? Causantes del Calentamiento Global. pp. 69.
Peñaloza D, Erlandsson M, Berlin J, Wålinder M, Falk A. 2018. Future scenarios for climate mitigation of new construction in Sweden: Effects of different technological pathways. J. Clean. Prod. 187:1025-1035.
Talukdar S, Banthia N. 2013. Carbonation in concrete infrastructure in the context of global climate change: Development of a service lifespan model. Constr. Build. Mater. 40:775-782.
Du H, Du S, Liu X. 2014. Durability performances of concrete with nano-silica. Constr. Build. Mater. 73:705-712.
Zahedi M, Ramezanianpour AA, Ramezanianpour AM. 2015. Evaluation of the mechanical properties and durability of cement mortars containing nanosilica and rice husk ash under chloride ion penetration. Constr. Build. Mater. 78:354-361.
Behfarnia K, Salemi N. 2013. The effects of nano-silica and nano-alumina on frost resistance of normal concrete. Constr. Build. Mater. 48:580-584.
Tobón JI, Payá J, Restrepo OJ. 2015. Study of durability of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mater. 80:92-97.
Isfahani FT, Redaelli E, Lollini F, Li W, Bertolini L. 2016. Effects of nanosilica on compressive strength and durability properties of concrete with different water to binder ratios. Adv. Mater. Sci. Eng. 2016(1):8453567.
Lim S, Mondal P. 2015. Effects of incorporating nanosilica on carbonation of cement paste. J Mater Sci. 50:3531-3540.
Wang D, Wu L, Shi C, Xiang S, Wu Z, Pan X. 2016. Effects of nanomaterials on hardening of cement-silica fume-fly ash-based ultra-high-strength concrete. Adv. Cem. Res. 28(9):555-566.
Tobón JI, Payá J, Restrepo OJ. 2015. Study of durability of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mater. 80:92-97.
Banthia N, Zanotti C, Sappakittipakorn M. 2014. Sustainable fiber reinforced concrete for repair applications. Constr. Build. Mater. 67(PART C):405-412.
Mohajerani A, Suter D, Jeffrey-Bailey T, Song T, Arulrajah A, Horpibulsuk S, et al. 2019. Recycling waste materials in geopolymer concrete. Clean Technol. Environ. Policy. 21:493-515.
Kishore K, Gupta N. 2020. Application of domestic & industrial waste materials in concrete: A review. Mater. Today Proc. 26(2):2926-2931.
Sandanayake M, Bouras Y, Haigh R, Vrcelj Z. 2020. Sustainable current trends of using waste materials in concrete-a decade review. Sustainability. 12(22):9622.
Zhang T, Yin Y, Gong Y, Wang L. 2020. Mechanical properties of jute fiber-reinforced high-strength concrete. Struct. Concr. 21(2):703-712.
Farooqi MU, Ali M. 2018. Contribution of plant fibers in improving the behavior and capacity of reinforced concrete for structural applications. Constr. Build. Mater. 182:94-107.
Bittner CM, Oettel V. 2022. Fiber reinforced concrete with natural plant fibers-investigations on the application of bamboo fibers in ultra-high performance concrete. Sustainability. 14(19):12011.
Zhao K, Xue S, Zhang P, Tian Y, Li P. 2019. Application of natural plant fibers in cement-based composites and the influence on mechanical properties and mass transport. Materials. 12(21):3498.
Ardanuy M, Claramunt J, Toledo Filho RD. 2015. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 79:115-128.
Onuaguluchi O, Banthia N. 2016. Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 68:96-108.
Talavera-pech WA, Montiel-rodr D, Paat-estrella JDLA, Ruth L, Jos TP, Tezozomoc P. 2021. Improvement in the carbonation resistance of construction mortar with cane bagasse fiber added. Materiales. 14(8):2066.
Afshinnia K, Rangaraju PR. 2016. Impact of combined use of ground glass powder and crushed glass aggregate on selected properties of Portland cement concrete. Constr. Build. Mater. 117:263-272.
Jiang M, Chen X, Rajabipour F, Hendrickson CT. 2014. Comparative life cycle assessment of conventional, glass powder, and alkali-activated slag concrete and mortar. J. Infrastruct. Syst. 20(4):04014020.
Nodehi M, Mohamad Taghvaee V. 2022. Sustainable concrete for circular economy: a review on use of waste glass. Glass Struct. Eng. 7:3-22.
Bellopede R, Zichella L, Marini P. 2020. Glass waste3: a preliminary study for a new industrial recovery processing. Sustainability.12(5):1997.
Schmitz A, Kamiński J, Maria Scalet B, Soria A. 2011. Energy consumption and CO2 emissions of the European glass industry. Energy Policy. 39(1):142-155.
Gorospe K, Booya E, Ghaednia H, Das S. 2019. Effect of various glass aggregates on the shrinkage and expansion of cement mortar. Constr. Build. Mater. 210:301-311.
Liu C, Su X, Wu Y, Zheng Z, Yang B, Luo Y, Yang J, Yang J. 2021. Effect of nano-silica as cementitious materials-reducing admixtures on the workability, mechanical properties and durability of concrete. Nanotechnol Rev. 10(1):1395-1409.
Jiang W, Li X, Lv Y, Jiang D, Liu Z, He C. 2020. Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Constr. Build. Mater. 238:117683.
Liu H, Yu Y, Liu H, Jin J, Liu S. 2018. Hybrid effects of nano-silica and graphene oxide on mechanical properties and hydration products of oil well cement. Constr. Build. Mater. 191:311-319.
Mendoza Reales OA, Duda P, Silva ECCM, Paiva MDM, Filho RDT. 2019. Nanosilica particles as structural buildup agents for 3D printing with Portland cement pastes. Constr. Build. Mater. 219:91-100.
Ramírez-Arévalo MS, Pérez-López T, Quintana-Owen P, Fajardo-San Miguel GJ, Talavera-Pech WA. 2022. Comparative study of physicochemical properties of MCM-41 silica nanoparticles obtained from recycled glass and TEOS. Silicon. 15:2653-2661.
Ganesh P, Murthy AR, Kumar SS, Reheman MMS, Iyer NR. 2016. Effect of nanosilica on durability and mechanical properties of high-strength concrete. Magaz. Concr. Res. 68(5):229-236.
Fallah S, Nematzadeh M. 2017. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Constr. Build. Mater. 132:170-187.
Rong Z, Sun W, Xiao H, Jiang G. 2015. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 56:25-31.
Rao S, Silva P, De Brito J. 2015. Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2). Constr. Build. Mater. 96:508-517.
Tobón JI, Payá J, Restrepo OJ. 2015. Study of durability of Portland cement mortars blended with silica nanoparticles. Constr. Build. Mater. 80:92-97.
Cruz-Moreno D, Fajardo G, Flores-Vivian I, Orozco-Cruz R, Ramos-Rivera C. 2020. Multifunctional surfaces of Portland cement-based materials developed with functionalized silicon-based nanoparticles. Appl. Surf. Sci. 531:147355.
Pan X, Shi Z, Shi C, Ling TC, Li N. 2017. A review on concrete surface treatment Part I: Types and mechanisms. Constr. Build. Mater. 132:578-590.
Pan X, Shi Z, Shi C, Ling TC, Li N. 2017. A review on surface treatment for concrete - Part 2: Performance. Constr. Build. Mater. 133:81-90.
Brunauer S, Emmett PH, Teller E. 1938. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2):309-319.
Talavera-Pech WA, Montiel-Rodríguez D, Paat-Estrella JA, López-Alcántara R, Pérez-Quiroz JT, Pérez-López T. 2021. Improvement in the carbonation resistance of construction mortar with cane bagasse fiber added. Materials. 14(8):2066.
PROCONSA ® GDC& B/ P. Hoja técnica_ Producto: Dispercon ‘AL-100’. pp. 1.
Rosenholm JM, Sahlgren C, Lindén M. 2010. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - Opportunities & challenges. Nanoscale. 2(10):1870-1883. Retrieved from https://pubs.rsc.org/en/content/articlelanding/2010/nr/c0nr00156b
Kinashi K, Kambe Y, Misaki M, Koshiba Y, Ishida K, Ueda Y. 2012. Synthesis, characterization, photo-induced alignment, and surface orientation of poly(9,9-dioctylfluorene-alt-azobenzene)s. J. Polym. Sci. A. Polym. Chem. 50(24):5107-5114.
Serrano MR, Saracho AMPG, Acosta DE, Bonini NA, Gonzo EE, Parentis ML. 2018. Síntesis de sílice mesoestructurada: determinación de las condiciones óptimas de extracción del templato. Matéria (Rio de Janeiro). Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2. 23(2).
Majchrzak-Kucȩba I, Nowak W. 2011. Characterization of MCM-41 mesoporous materials derived from polish fly ashes. Int. J. Miner. Process. 101(1-4):100-111.
Lin YS, Tsai CP, Huang HY, Kuo CT, Hung Y, Huang DM, et al. 2005. Well-ordered mesoporous silica nanoparticles as cell markers. Chem. Mater. 17(18):4570-4573. Retrieved from https://pubs.acs.org/doi/suppl/10.1021/cm051014c/suppl_file/cm051014csi20050711_121101.pdf
Bernal YP, Alvarado J, Juárez RL, Méndez Rojas MÁ, de Vasconcelos EA, de Azevedo WM, et al. 2019. Synthesis and characterization of MCM-41 powder and its deposition by spin-coating. Optik. 185:429-440.
Cazula BB, Oliveira LG, Machado B, Alves HJ. 2021. Optimization of experimental conditions for the synthesis of Si-MCM-41 molecular sieves using different methods and silica sources. Mater. Chem. Phys. 266:124553.
Zakaznova-Herzog VP, Harmer SL, Nesbitt HW, Bancroft GM, Flemming R, Pratt AR. 2006. High resolution XPS study of the large-band-gap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction. Surf. Sci. 600(2):348-356.
Briggs D. X-ray photoelectron spectroscopy (XPS). 2005. Handbook of Adhesion: Second Edition. pp. 621-622.
NIST X-ray Photoelectron Spectroscopy database [cited 2024 Jul 21].
Chubar N, Gilmour R, Gerda V, Mičušík M, Omastova M, Heister K, et al. 2017. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability. Adv. Colloid Interface Sci. 245:62-80.
Nohira H, Tsai W, Besling W, Young E, Petry J, Conard T, et al. 2002. Characterization of ALCVD-Al2O3 and ZrO2 layer using X-ray photoelectron spectroscopy. J. Non. Cryst. Solids. 303(1):83-87.
Reches Y. 2018. Nanoparticles as concrete additives: Review and perspectives. Constr. Build. Mater. 175:483-495.
Balapour M, Joshaghani A, Althoey F. 2018. Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review. Constr. Build. Mater. 181:27-41.
Said AM, Zeidan MS, Bassuoni MT, Tian Y. 2012. Properties of concrete incorporating nano-silica. Constr. Build. Mater. 36:838-844.
Oltulu M, Şahin R. 2014. Pore structure analysis of hardened cement mortars containing silica fume and different nano-powders. Constr. Build. Mater. 53:658-664.
Du H, Du S, Liu X. 2014. Durability performances of concrete with nano-silica. Constr. Build. Mater. 73:705-712.
Ribeiro B, Uchiyama T, Tomiyama J, Yamamoto T, Yamashiki Y. 2020. Development of interlocking concrete blocks with added sugarcane residues. Fibers. 8(10):61.
Moreno EI, Ixtepan DS, Sarabia EC. 2005. Barras de acero galvanizado: Una opción contra la corrosión inducida por la carbonatación. Ingeniería. 9(2):17-24.
Chávez-Ulloa, E., Camacho-Chab, R., Sosa-Baz, M., Castro-Borges, P., & Pérez-López, T. (2013). Corrosion Process of Reinforced Concrete by Carbonation in a Natural Environment and an Accelerated Test Chamber. Inter. J. Electrochem. Sci. 8(7):9015-9029.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Consejo Nacional de Ciencia y Tecnología
Grant numbers 1032132 Masters scholarship;A1-S-34533 grant for maintainance of TEM equipment