Fatigue of SFRC in compression: Size effect & autogenous self-healing
DOI:
https://doi.org/10.3989/mc.2024.395724Keywords:
Size and Shape Effects, Steel Fiber Reinforced Concrete (SFRC), Fatigue-Induced Autogenous Self-HealingAbstract
This review synthesizes prior research on size effect and autogenous self-healing in steel fiber-reinforced concrete (SFRC) under compressive fatigue. It explores the fatigue behavior of SFRC, focusing on fiber reinforcement’s role in post-cracking toughness, crack propagation, and fatigue endurance. The review demonstrates that larger SFRC specimens have reduced fatigue lives, attributed to increased elastic energy driving microcrack growth, aligning with classical size effect theory. Additionally, it highlights autogenous self-healing, where fatigue-induced microcracks release occluded water, promoting rehydration and calcium carbonate precipitation, which enhances residual strength. The interaction between size effect, fiber content, and self-healing is examined, offering insights into improving SFRC’s durability under cyclic loading. These findings have practical implications for designing SFRC structures subjected to compressive fatigue, such as wind turbine towers and railway slabs.
Downloads
References
Bažant ZP, Planas J. 1998. Fracture and size effect in concrete and other quasibrittle materials. CRC Press, Boca Raton, Florida, USA.
Del Viso JR, Carmona JR, Ruiz G. 2008. Shape and size effects on the compressive strength of high-strength concrete. Cem. Concr. Res. 38(3): 386-395.
Jansen DC, Shah SP. 1997. Effect of length on compressive strain softening of concrete. J. Eng. Mech. 123 (1): 25-35.
Wu B, Liu C, Yang Y. 2013. Size effect on compressive behaviours of normal-strength concrete cubes made from demolished concrete blocks and fresh concrete. Mag. Concr. Res. 65 (19): 1155-1167.
Sim JI, Yang KH, Jeon JK. 2013. Influence of aggregate size on the compressive size effect according to different concrete types. Constr. Build. Mater. 44: 716-725.
Paris P, Erdogan F. 1963. A critical analysis of crack propagation laws. J. Basic Eng. 85(4): 528-533.
Zhang J, Li VC, Stang H. 2001. Size effect on fatigue in bending of concrete. J. Mater. Civ. Eng. 13(6): 446-453.
Taher SEDF, Fawzy TM. 2000. Performance of very-high-strength concrete subjected to short-term repeated loading. Mag. Concr. Res. 52(3): 219-223.
Sinaie S, Heidarpour A, Zhao XL, Sanjayan JG. 2015. Effect of size on the response of cylindrical concrete samples under cyclic loading. Constr. Build. Mater. 84: 399-408.
Di Prisco M, Plizzari G, Vandewalle L. 2009. Fibre reinforced concrete: new design perspectives. Mater. Struct. 42: 1261-1281.
Masih VW, Ruiz G, Yu RC, De La Rosa A. 2024. Crack initiation and growth in indirect tensile tests of steel fiber-reinforced concrete studies by means of DIC. In: Mechtcherine V, Signorini C, Junger D, editors. Transforming Construction: Advances in Fiber Reinforced Concrete, BEFIB 2024. RILEM Bookseries 54. p. 43-50.
Ruiz G, De La Rosa A, Poveda E, Zanon R, Schäfer M, Wolf S. 2023. Compressive behaviour of steel-fibre reinforced concrete in Annex L of new Eurocode 2. Hormigón y Acero. 299-300: 187-198.
Carmona JR, Cortés-Buitrago R, Rey-Rey J, Ruiz G. 2022. Planar crack approach to evaluate the flexural strength of fiber-reinforced concrete sections. Materials. 15(17): 5821.
Poveda E, Ruiz G, Cifuentes H, Yu RC, Zhang XX. 2017. Influence of the fiber content on the compressive low-cycle fatigue behavior of self-compacting SFRC. Int. J. Fatigue. 101 (1): 9-17.
Morris AD, Garrett GG. 1981. A comparative study of the static and fatigue behaviour of plain and steel fibre reinforced mortar in compression and direct tension. Int. J. Cem. Compos. Lightw. Concr. 3(2): 73-91.
Lee MK, Barr BIG. 2004. An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cem. Concr. Compos. 26(4): 299-305.
Medeiros A, Zhang XX, Ruiz G, Yu RC, Velasco MSL. 2015. Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete. Int. J. Fatigue. 70: 342-350.
Li VC, Lin Z, Matsumoto T. 1998. Influence of fiber bridging on structural size-effect. Int. J. Solids Struct. 35 (31-32):4223-4238.
Fládr J, Bíly P. 2018. Specimen size effect on compressive and flexural strength of high-strength fibre-reinforced concrete containing coarse aggregate. Compos. Part B-Eng. 138: 77-86.
Nelson EL, Carrasquillo RL, Fowler DW. 1988. Behavior and failure of high-strength concrete subjected to biaxial-cyclic compression loading. ACI Mater. J. 85(4): 248-253.
Taliercio ALF, Gobbi E. 1997. Effect of elevated triaxial cyclic and constant loads on the mechanical properties of plain concrete. Mag. Concr. Res. 49 (181): 353-365.
Cachim PB, Figueiras JA, Pereira PAA. 2002. Fatigue behavior of fiber-reinforced concrete in compression. Cem. Concr. Compos. 24 (2): 211-217.
Malek A, Scott A, Pampanin S, MacRae G, Marx S. 2018. Residual capacity and permeability-based damage assessment of concrete under low-cycle fatigue. J. Mater. Civ. Eng. 30 (6): 04018081.
Qiu J, Aw-Yong WL, Yang EH. 2018. Effect of self-healing on fatigue of engineered cementitious composites (ECCs). Cem. Concr. Compos. 94: 145-152.
Garijo L, Ortega JJ, Ruiz G, De La Rosa A, Zhang XX. 2022. Effect of loading frequency on the fatigue life in compression of natural hydraulic lime mortars. Theor. Appl. Fract. Mech. 118:103201.
Ortega JJ, Ruiz G, Poveda E, González DC, Tarifa M, Zhang X, Yu RC, Vicente MÁ, De La Rosa Á. 2022. Size effect on the compressive fatigue of fibre-reinforced concrete. Constr. Build. Mater. 322:126238.
González DC, Mena A, Ruiz G, Ortega JJ, Poveda E, Mínguez J, Yu R, De La Rosa Á, Vicente MÁ. 2023. Size effect of steel fiber–reinforced concrete cylinders under compressive fatigue loading: Influence of the mesostructure. Int. J. Fatigue. 167(B): 107353.
De La Rosa Á, Ortega JJ, Ruiz G, García Calvo JL, Rubiano Sánchez FJ, Castillo Á. 2023. Autogenous self-healing induced by compressive fatigue in self-compacting steel-fiber reinforced concrete. Cem. Concr. Res. 173: 107278.
Ferrara L, Krelani V, Moretti F, Roig Flores M, Serna Ros P. 2017. Effects of autogenous healing on the recovery of mechanical performance of high performance fibre reinforced cementitious composites (HPFRCCs): Part 1. Cem. Concr. Compos. 83: 76-100.
Mihashi H, Nishiwaki T. 2012. Development of engineered self-healing and self-repairing concrete–State-of-the-art report. J. Adv. Concr. Technol. 10 (5): 170-184.
Van Tittelboom K, De Belie N. 2013. Self-healing in cementitious materials–A review. Materials. 6(6): 2182-2217.
De Belie N, Gruyaert E, Al-Tabbaa A, Antonaci P, Baera C, Bajare D, Darquennes A, Davies R, Ferrara L, Jefferson T, Litina C, Miljevic B, Otlewska A, Ranogajec J, Roig-Flores M, Paine K, Lukowski P, Serna P, Tulliani JM, Vucetic S, Wang J, Jonkers HM. 2018. A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces. 5(17): 1800074.
Wu M, Johannesson B, Geiker M. 2012. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 28(1): 571-583.
De Rooij M, Van Tittelboom K, De Belie N, Schlangen E, editors. 2013. Self-healing phenomena in cement-based materials. RILEM Tech. Comm. 221-SHC. Vol. 11. Springer, Dordrecht.
Edvardsen C. 1999. Water permeability and autogenous healing of cracks in concrete. ACI Mater. J. 96(4): 448–454.
Roig-Flores M, Formagini S, Serna P. 2021. Self-healing concrete: What is it good for? Mater. Construcc. 71(341): e237.
Moreira TNC, Krelani V, Rocha Ferreira S, Ferrara L, Toledo Filho RD. 2022. Self-healing of slag-cement ultra-high performance steel fiber reinforced concrete (uhpfrc) containing sisal fibers as healing conveyor. J. Build. Eng. 54: 104638.
Snoeck D, De Belie N. 2016. Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers. J. Mater. Civ. Eng. 28 (1): 1-11.
Chacón C, Cifuentes H, Luna-Galiano Y, Ríos JD, Ariza P, Leiva C. 2023. Exploring the impact of graphene oxide on mechanical and durability properties of mortars incorporating demolition waste: Micro and nano-pore structure effects. Mater. Construcc. 73 (352): e327.
Suescum-Morales D, Ríos JD, Martínez De La Concha A, Cifuentes H, Jiménez JR, Fernández JM. 2021. Effect of moderate temperatures on compressive strength of ultra-high-performance concrete: A microstructural analysis. Cem. Concr. Res. 140: 106303.
Tarifa M, Zhang XX, Ruiz G, Poveda E. 2015. Full-scale fatigue tests of precast reinforced concrete slabs for railway tracks. Eng. Struct. 100: 610-621.
Poveda E, Yu RC, Lancha JC, Ruiz G. 2015. A numerical study on the fatigue life design of concrete slabs for railway tracks. Eng. Struct. 100 :455-467.
Zanon R, Schäfer M, Ruiz G, Yu RC, De La Rosa A, Masih VW. 2024. Experimental bending tests on encased steel-concrete composite beams with SFRC. In: Mechtcherine V, Signorini C, Junger D, editors. Transforming Construction: Advances in Fiber Reinforced Concrete, BEFIB 2024. RILEM Bookseries 54. p. 197-204.
Jinawath P. 1974. Cumulative fatigue damage of plain concrete in compression [Ph.D. thesis]. University of Leeds, Leeds, United Kingdom.
Holmen JO. 1979. Fatigue of concrete by constant and variable amplitude loading [Ph.D. thesis]. University of Trondheim, Trondheim, Norway.
Hordijk DA, Reinhardt HW. 1993. Numerical and experimental investigation into the fatigue behavior of plain concrete. Exp. Mech. 33(4):278-285.
Petryna YS, Pfanner D, Stangenberg F, Krätzig WB. 2002. Reliability of reinforced concrete structures under fatigue. Reliab. Eng. Syst. Saf. 77(3):253-261.
Zanuy C, de la Fuente P, Albajar L. 2007. Effect of fatigue degradation of the compression zone of concrete in reinforced concrete sections. Eng. Struct. 29 (11): 2908-2920.
American Concrete Institute (ACI). 2022. Concrete structure design for fatigue loading--Report. ACI PRC-215-21. American Concrete Institute.
Ruiz G, De La Rosa Á, Poveda E. 2019. Relationship between residual flexural strength and compression strength in steel-fiber reinforced concrete within the new Eurocode 2 regulatory framework. Theor. Appl. Fract. Mech. 103: 102310.
De La Rosa Á, Ruiz G, Poveda E. 2019. Study of the compression behavior of steel-fiber reinforced concrete by means of the response surface methodology. Appl. Sci. 9 (24): 5330.
Sparks PR, Menzies JB. 1973. Effect of rate of loading upon static and fatigue strengths of plain concrete in compression. Mag. Concr. Res. 25(83): 73-80.
Lohaus L, Oneschkow N, Wefer M. 2012. Design model for the fatigue behaviour of normal-strength, high-strength and ultra-high-strength concrete. Struct. Concr. 13(3): 182-192.
Comité Euro-International du Béton (CEB). 1988. Fatigue of concrete structures. State of the art report. CEB Report 188, Lausanne.
fib Bulletins 65 & 66. 2012. Model Code 2010, Final Draft. International Federation for Structural Concrete (fib), Lausanne, Switzerland.
Ortega JJ, Ruiz G, Yu RC, Afanador-García N, Tarifa M, Poveda E, Zhang X, Evangelista F. 2018. Number of tests and corresponding error in concrete fatigue. Int. J. Fatigue. 116:210-219.
Tarifa M, Ruiz G, Poveda E, Zhang XX, Vicente MA, González DC. 2018. Effect of uncertainty on load position in the fatigue life of steel-fiber reinforced concrete under compression. Mater. Struct. 51(1).
González DC, Mena-Alonso Á, Poveda E, Mínguez J, De La Rosa Á, Yu RC, Ruiz G, Vicente MA. 2024. Study of the edge effect in fiber-reinforced concrete cylindrical molded specimens using computed tomography. In: Mechtcherine V, Signorini C, Junger D, editors. Transforming Construction: Advances in Fiber Reinforced Concrete, BEFIB 2024. RILEM Bookseries 54. p. 27-34.
Saucedo L, Yu RC, Medeiros A, Zhang XX, Ruiz G. 2013. A probabilistic fatigue model based on the initial distribution to consider frequency effect in plain and fiber reinforced concrete. Int. J. Fatigue. 48: 308-318.
Blasón S, Poveda E, Ruiz G, Cifuentes H, Fernández Canteli A. 2019. Twofold normalization of the cyclic creep curve of plain and steel-fiber reinforced concrete and its application to predict fatigue failure. Int. J. Fatigue. 120:215-227.
Blasón S, Fernández Canteli A, Poveda E, Ruiz G, Yu RC, Castillo E. 2022. Damage evolution and probabilistic strain-lifetime assessment of plain and fiber-reinforced concrete under compressive fatigue loading: Dual and integral phenomenological model. Int. J. Fatigue. 158:106739.
Scrivener K, Snellings R, Lothenbach B, editors. 2016. A practical guide to microstructural analysis of cementitious materials. CRC Press, Taylor & Francis Group. ISBN-13: 978-1-4987-3867-5.
García Calvo JL, Hidalgo A, Alonso C, Fernández Luco L. 2010. Development of low-pH cementitious materials for HLRW repositories resistance against ground waters aggression. Cem. Concr. Res. 40(8): 1290-1297.
García Calvo JL, Sánchez Moreno M, Alonso Alonso MC, Hidalgo López A, García Olmo J. 2013. Study of the microstructure evolution of low-pH cements based on ordinary Portland cement (OPC) by mid- and near-infrared spectroscopy, and their influence on corrosion of steel reinforcement. Materials. 6(6): 2508-2521.
Fernández A, Alonso MC, García-Calvo JL, Lothenbach B. 2016. Influence of the synergy between mineral additions and Portland cement in the physical-mechanical properties of ternary binders. Mater. Construcc. 66 (324).
Von Greve-Dierfeld S, Lothenbach B, Vollpracht A, Wu B, Huet B, Andrade C, Medina C, Thiel C, Gruyaert E, Vanoutrive H, et al. 2020. Understanding the carbonation of concrete with supplementary cementitious materials: A critical review by RILEM TC 281-CCC. Mater. Struct. 53(6): 136.
Morandeau A, Tognazzi C, Dangla P. 2014. Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties. Cem. Concr. Res. 56: 153-170.
Ye G. 2003. Experimental study and numerical simulation of the development of the microstructure and permeability of cementitious materials [Ph.D. thesis]. T.U. Delft, Delft University Press.
Mindess S, Young J. 1981. Concrete. Prentice-Hall Civil Engineering and Engineering Mechanics Series. Prentice-Hall.
Wang L, Zhang W. 2021. Investigation on water absorption in concrete after subjected to compressive fatigue loading. Constr. Build. Mater. 299: 123897.
Lei B, Li W, Li Z, Wang G, Sun Z. 2018. Effect of cyclic loading deterioration on concrete durability: Water absorption, freeze-thaw, and carbonation. J. Mater. Civ. Eng. 30(9): 04018220.
Sun X, Tian Y, Yin W, Wang H. 2022. Effect of free water on fatigue performance of concrete subjected to compressive cyclic load. Constr. Build. Mater. 318: 125995.
Zhang Y, Zhang S, Wei G, Wei X, Jin L, Xu K. 2019. Water transport in unsaturated cracked concrete under pressure. Adv. Civ. Eng. 2019(1):4504892.
Van Tittelboom K, De Belie N. 2013. Self-healing in cementitious materials—A review. Materials. 6(6): 2182-2217.
Yang S, Yang Y, Caggiano A, Ukrainczyk N, Koenders E. 2022. A phase-field approach for portlandite carbonation and application to self-healing cementitious materials. Mater. Struct. 55 (46).
Yang S, Aldakheel F, Caggiano A, Wriggers P, Koenders E. 2020. A review on cementitious self-healing and the potential of phase-field methods for modeling crack-closing and fracture recovery. Materials. 13 (22): 5265.
Yao C, Shen A, Guo Y, Lyu Z, He Z, Wu H. 2022. A review on autogenous self-healing behavior of ultra-high performance fiber reinforced concrete (UHPFRC). Arch. Civ. Mech. Eng. 22(145).
Javierre E, Gaspar F, Rodrigo C. 2019. Modelling the carbonation reactions in self-healing concrete. In: 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-X.
Chitez A, Jefferson A. 2016. A coupled thermo-hygro-chemical model for characterising autogenous healing in ordinary cementitious materials. Cem. Concr. Res. 88: 184-197.
Li L, Xu L, Huang L, Xu F, Huang Y, Cui K, Zeng Y, Chi Y. 2022. Compressive fatigue behaviors of ultra-high performance concrete containing coarse aggregate. Cem. Concr. Compos. 128: 104425.
Golewski G, Szostak B. 2021. Strengthening the very early-age structure of cementitious composites with coal fly ash via incorporating a novel nanoadmixture based on C-S-H phase activators. Constr. Build. Mater. 312: 125426.
Golewski G. 2018. An analysis of fracture toughness in concrete with fly ash addition considering all models of cracking. IOP Conf. Ser.: Mater. Sci. Eng. 416:012029.
Jaroenratanapirom D, Sahamitmongkol R. 2011. Self-crack closing ability of mortar with different additives. J. Met. Mater. Miner. 21(1):9-17.
Zhuang W, Li S, Wang Z, Zhang Z, Yu Q. 2022. Impact of micromechanics on dynamic compressive behavior of ultra-high performance concrete containing limestone powder. Compos. Part B-Eng. 243: 110160.
Fan S, Li M. 2015. X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites. Smart Mater. Struct. 24: 015021
Savija B, Luković M. 2016. Carbonation of cement paste: Understanding, challenges, and opportunities. Constr. Build. Mater. 117: 285-301.
Visser J. 2014. Influence of the carbon dioxide concentration on the resistance to carbonation of concrete. Constr. Build. Mater. 67 (A): 8-13.
Cuenca E, Tejedor A, Ferrara L. 2018. A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr. Build. Mater. 179: 619-632.
Van Tittelboom K, Gruyaert E, Rahier H, De Belie N. 2012. Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Constr. Build. Mater. 37: 349-359.
Ferrara L, Krelani V, Moretti F, Roig-Flores M, Serna Ros P. 2017. Effects of autogenous healing on the recovery of mechanical performance of high performance fibre reinforced cementitious composites (HPFRCCs): Part 1. Cem. Concr. Compos. 83: 76-100.
Ferrara L, Krelani V, Moretti F. 2016. Autogenous healing on the recovery of mechanical performance of High Performance Fibre Reinforced Cementitious Composites (HPFRCCs): Part 2 - correlation between healing of mechanical performance and crack sealing. Cem. Concr. Compos. 73: 299-315.
Roig-Flores M, Moscato S, Serna P, Ferrara L. 2015. Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 86: 1-11.
Ferrara L, Ferreira S, Krelani V, Della Torre M, Silva F, Toledo R. 2015. Natural fibers as promoters of autogenous healing in HPFRCCs: Results from ongoing Brazil-Italy cooperation. fib Bulletin 305.
Cuenca E, Echegaray-Oviedo J, Serna P. 2015. Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams. Compos. Part B-Eng. 75:135-147.
Snoeck D, De Belie N. 2015. From straw in bricks to modern use of microfibers in cementitious composites for improved autogenous healing—A review. Constr. Build. Mater. 95: 774-787.
Wu M, Johannesson B, Geiker M. 2012. Self-healing in cementitious materials and engineered cementitious composite as a self-healing material: A review. Constr. Build. Mater. 28(1): 571-583.
Ortiz-Navas F, Navarro-Gregori J, Leiva-Herdocia G, Serna P, Cuenca E. 2018. An experimental study on the shear behaviour of reinforced concrete beams with macro-synthetic fibres. Constr. Build. Mater. 169: 888-899.
Susetyo J, Vecchio F. 2010. Effectiveness of the steel fiber as minimum shear reinforcement: panel test. fib Bulletin 57: 227-241.
Cuenca E, Serna P. 2013. Shear behavior of prestressed precast beams made of self-compacting fiber reinforced concrete. Constr. Build. Mater. 45: 145-156.
Yang Y, Lepech M, Yang EH, Li VC. 2009. Autogenous healing of engineered cementitious composites under wet-dry cycles. Cem. Concr. Res. 39 (5): 382-390.
Snoeck D, Van Tittelboom K, Steuperaet S, Dubruel P, De Belie N. 2014. Self-healing cementitious materials by the combination of microfibers and superabsorbent polymers. J. Intell. Mater. Syst. Struct. 25(1): 13-24.
Li VC, Wang S, Wu C. 2001. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composites (PVA-ECC). ACI Mater. J. 98(6): 483-492.
Picandet V, Khelidj A, Bellegou. 2009. Crack effects on gas and water permeability of concretes. Cem. Concr. Res. 39(6): 537-547.
Slowik V, Saouma V. 2000. Water pressure in propagating concrete cracks. J. Struct. Eng. 126 (2): 235-242.
Gan Y, Zhang H, Zhang Y, Xu Y, Schlangen E, van Breugel K, Savija B. 2021. Experimental study of flexural fatigue behaviour of cement paste at the microscale. Int. J. Fatigue. 151:106378.
Cui X, Han B, Zheng Q, Yu X, Dong S, Zhang L, Ou J. 2017. Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Compos. Part A: Appl. Sci. Manuf. 103: 131-147.
Gan Y, Zhang H, Liang M, Zhang Y, Schlangen E, van Breugel K, Savija B. 2022. Flexural strength and fatigue properties of interfacial transition zone at the microscale. Cem. Concr. Compos. 133: 104717.
Toumi A, Bascoul A, Turatsinze A. 1998. Crack propagation in concrete subjected to flexural cyclic loading. Mater. Struct. 31:451-458.
Saito M. 1987. Characteristics of microcracking in concrete under static and repeated tensile loading. Cem. Concr. Res. 17 (2): 211-218.
Bažant ZP, Xu KM. 1991. Size effect in fatigue fracture of concrete. ACI Mater. J. 88(4): 390-399.
Kirane K, Bažant ZP. 2016. Size effect in Paris law and fatigue lifetimes for quasibrittle materials: Modified theory, experiments and micro-modeling. Int. J. Fatigue. 83(2): 209-220.
Bullard J, Lothenbach B, Stutzman P, Snyder K. 2011. Coupling thermodynamics and digital image models to simulate hydration and microstructure development of portland cement pastes. J. Mater. Res. 26(4): 609-622.
Grossegger D. 2021. Fatigue damage self-healing analysis and the occurrence of an optimal self-healing time in asphalt concrete. J. Mater. Civ. Eng. 33 (6).
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.
Funding data
Ministerio de Ciencia e Innovación
Grant numbers PID2019-110928RB-C31 and PID2023-147971OB-C31
European Regional Development Fund
Grant numbers 2022-GRIN-34124
Universidad de Castilla-La Mancha
Grant numbers PID2023-147971OB-C31