The fatigue process of concrete and its structural influence


  • Carlos Zanuy E.T.S. Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid
  • Luis Albajar E.T.S. Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid
  • Pablo de la Fuente E.T.S. Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid



Concrete, Fatigue, Mechanical properties, Microcracking, Damage


Fatigue of concrete is a microcracking process leading to the change of the macroscopic material properties. In particular, progressive stiffness decrease and increase of total and residual strains are developed as a function of the number of cycles and the stress level. The influence of the fatigue process on the behaviour of structural members is complex, because a cyclic redistribution of stresses develops within the structure. Owing to this fact, the employ of S-N curves to estimate the fatigue life usually leads to extremely conservative results. In this paper, a fatigue model for concrete is presented accounting for the evolution of the material properties. The model is able to obtain the fatigue life and the evolution of stresses and strains. The results are compared with other available design rules and a modification is proposed to estimate the number of cycles to failure in a simple way for the engineering practice.


Download data is not yet available.


(1) Paris P., Erdogan F.: "A critical analysis of crack propagation laws", Journal Basic Engineering, (1963), pp. 528-34.

(2) Mu B., Subramaniam K.V., Shah S.P.: "Failure mechanism of concrete under fatigue compressive load", J. Mater. Civil Eng., Vol. 16, nº 6, (2004), pp. 566-72. doi:10.1061/(ASCE)0899-1561(2004)16:6(566)

(3) Bennett E.W., Raju N.K.: "Cumulative fatigue damage of plain concrete in compression", International conference on structures, solid mechanics and engineering design in Civil Engineering materials, University of Southampton (1969), pp. 1089-1101.

(4) Shah S.P., Chandra S.: "Fracture of concrete subjected to cyclic and sustained loading", ACI J., Vol. 67-49, (1970), pp. 816-825.

(5) Hsu T.T.C.: "Fatigue of plain concrete", ACI J., Vol. 78, nº 4, (1981), pp. 292-305.

(6) Petkovic G., Lenschow R., Stemland H., Rosseland S.: "Fatigue of high strength concrete", ACI SP 121-25, (1990), pp. 505-25.

(7) Zanuy C.: Análisis seccional de elementos de hormigón armados sometidos a fatiga, incluyendo secciones entre fisuras, PhD Thesis, Universidad Politécnica de Madrid, p. 251 (2008). Disponible en:

(8) Park Y.J.: "Fatigue of concrete under random loadings", J. Struct. Eng.-ASCE, Vol. 116, nº 11, (1990), pp. 3228-35. doi:10.1061/(ASCE)0733-9445(1990)116:11(3228)

(9) Holmen J.O.: Fatigue of concrete by constant and variable amplitude loading, PhD Thesis, University of Trondheim, Norway, (1979).

(10) Hohberg R.: Zum Ermüdungsverhalten von Beton, PhD Thesis, Univ. Berlin, p. 91 (2004).

(11) Miner M.A.: "Cumulative damage in fatigue", Transactions ASME, Journal of Applied Mechanics, Vol. 67, (1945), pp. A 159.

(12) Zanuy C., Albajar L., de la Fuente P.: "Sectional analysis of concrete structures under fatigue loading", ACI Struct. J., Vol. 106, nº 5 (2009), pp. 667-677.

(13) Hilsdorf H.K., Kesler C.E.: "Fatigue strength of concrete under varying flexural stresses", Journal of the American Concrete Institute, Proceedings, Vol. 63, nº 10 (1966), pp. 1059-1076.

(14) Hashem M.: Betriebsfestigkeitsnachweis von biegebeanspruchten Stahlbetonbauteilen, PhD Thesis, Technische Universität Darmstadt, p. 112 (1986).

(15) Schläfli M., Brühwiler E.: "Fatigue of existing reinforced concrete bridge deck slabs", Eng. Struct., Vol. 20, nº 11, (1998), pp. 991-98. doi:10.1016/S0141-0296(97)00194-6

(16) Kuryllo A., Kwascha W., Lewschitsch W.: "Versuche über das Verhalten auf Biegung beanspruchter Stahlbeton - Bauteile unter häufig wiederholter Belastung", Beton und Stahlbetonbau, Vol. 4 / 1976, (1976), pp. 103-6.

(17) CEN: Eurocode 2. Part 2. EC2-2. Concrete bridges. Design and detiling rules. prEN 1992-2, p. 90, Brussels, Belgium (1992).

(18) CEB - FIP: CEB - FIP Model Code (1990), Lausanne (Switzerland) (1991).

(19) König G., Danielewicz I.: Ermüdungsfestigkeit von Stahlbeton- und Spannbetonbauteilen mit Erläuterungen zu den Nachweisen gemäss CEB-FIP Model-Code 1990, Deutscher Ausschuss für Stahlbeton. Heft 439, Berlin (1994).

(20) Van Bogaert P.: "Fatigue due to concrete compression in bridges compared to practice", fib International Symposium, London, UK (2009), pp.

(21) Kim J.K., Kim Y.Y.: "Experimental study of the fatigue behavior of high strength concrete", Cement Concrete Res., Vol. 26, nº 10, (1996), pp. 1513-23. doi:10.1016/0008-8846(96)00151-2

(22) Do M.-T., Chaallal O., Aitcin P.-C.: "Fatigue behavior of high performance concrete", J. Mater. Civil Eng., Vol. 5, nº 1, (1993), pp. 96-110. doi:10.1061/(ASCE)0899-1561(1993)5:1(96)

(23) Awad M.E., Hilsdorf H.K.: Strength and deformation characteristics of plain concrete subjected to high repeated and sustained loads, University of Illinois, Urbana, Illinois (1971).

(24) Klausen D.: Festigkeit und Schädigung von Beton bei häufig wiederholter Beanspruchung, PhD Thesis, Universität Darmstadt, p. 85 (1978).

(25) Ople F.S., Hulsbos C.L.: "Probable fatigue life of plain concrete with stress gradient", ACI J., Vol. 63, nº 1, (1966), pp. 59-82.

(26) Aas-Jakobsen K.: Fatigue of concrete beams and columns, PhD Thesis, University of Trondheim, p. 148 (1970).

(27) Tepfers R., Kutti T.: "Fatigue strength of plain, ordinary, and lightweight concrete", ACI J., Vol. 76, nº 5, (1979), pp. 635-52.

(28) Zhang B., Phillips D.V., Wu K. : "Efects of loading frequency and stress reversal on fatigue life of plain concrete", Mag. Concrete Res., Vol. 48, nº 177, (1996), pp. 361-75. doi:10.1680/macr.1996.48.177.361




How to Cite

Zanuy, C., Albajar, L., & de la Fuente, P. (2011). The fatigue process of concrete and its structural influence. Materiales De Construcción, 61(303), 385–399.



Research Articles