Improving the prediction of strength and rigidity of structural timber by combining ultrasound techniques with visual grading parameters

Authors

  • M. Conde García Timber Structures Lab., Forest Research Centre (CIFOR-INIA)
  • J. I. Fernández-Golfín Seco Timber Structures Lab., Forest Research Centre (CIFOR-INIA)
  • E. Hermoso Prieto Timber Structures Lab., Forest Research Centre (CIFOR-INIA)

DOI:

https://doi.org/10.3989/mc.2007.v57.i288.64

Keywords:

ultrasound, timber, visual grading, mechanical properties, non destructive analysis

Abstract


The present study explores the possibility of using longitudinal ultrasound transmission to evaluate the bending strength and modulus of elasticity in structural timber made from the two species most commonly found in Spanish construction and rehabilitation works: Scots pine (Pinus sylvestris L.) and Laricio pine (Pinus nigra Arn.).
An analysis of 1305 Scots pine and 852 Laricio pine beams shows that ultrasound transmission velocity alone can predict neither the bending strength nor the modulus of elasticity and that other predictive variables are required.
A series of models are proposed based on ultrasound transmission velocity measurements, the relative size of the largest face and edge knots, length and density. After running models for each species individually and for the two jointly, a single model is found to be suitable for both.
The models proposed explain from 63 to 73 per cent of bending strength and modulus of elasticity variability.

Downloads

Download data is not yet available.

References

(1) Brashaw, B. K.; Vatalaro, R.; Wacker, J. y Ross, R.: “Condition Assessment of Timber Bridges: part 2. Evaluation of Several Stress- Wave Timer Devices”, Gen. Tech. Report FPL–GTR–160. Madison, WI : U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2005, 12 pp.

(2) Pellerin, R. y Ross, R.: Nondestructive evaluation of wood. USDA Forest Service, Forest Products Laboratory, Madison WI. Forest Products Society. ISBN 1-892529-26-2, 2002, 209 pp.

(3) Hermoso Prieto, E.: Caracterización mecánica de la madera estructural de Pinus sylvestris L. Tesis Doctoral. Universidad Politécnica de Madrid (UPM), España, 2001.

(4) Fujii, Y.: “Using acoustic emission monitoring to detect termite activity in wood”, Forest Prod. Journal, vol. 40, nº 1 (1990), pp. 34-36.

(5) Fuller, J. J.; Ross, R. J. y Dramm, J. R.: Honeycomb and surface check detection using ultrasonic nondestructive evaluation. Res. Note FPL-RN-0261. Madison, WI: US. Department of Agriculture, Forest Service, Forest Products Laboratory, 1994, 6 pp.

(6) Karsulovic, J. T.; León, L. A.; Gaete, L.: “Ultrasonic detection of knots and annual ring orientation in Pinus radiata lumber”, Wood and Fiber Science, 32 (3) (2000), pp. 278-286.

(7) Bucur, V.: “Relationship between grain angle of wood specimens and ultrasonic velocity”, Catgut Acoustical Society Inc., 41 (1984), pp. 30-35.

(8) Kabir, M. F.: “Prediction of ultrasonic properties from grain angle”, Journal of the Institute of Wood Science, vol. 15, nº 5 (89) (2001), pp. 235-246.

(9) Sandoz, J. L.; Benoit, Y. y Demay, L.: “Wood testing using acousto-ultrasonic”, 12th International Symposium on Nondestructive Testing of Wood, 2000, pp. 97-104.

(10) Reiterer, A.; Stanzl-Tschegg, E. y Tschegg, K.: 2000. “Mode I fracture and acoustic emission of softwood and hardwood”, Wood Science and Technology, 34 (2000), pp. 417-430. doi:10.1007/s002260000056

(11) Beall, F. C.; Tiitta, M. y Biernacki, J. M.: “The use of acousto-ultrasonics to detect biodeterioration in structural wooden members”, Proceedings of the Nondestructive Testing and Evaluation of Infraestructure, vol. 2 (1998), Am. Soc. for Nondestructive Testing, Columbus, OH, pp. 181-206.

(12) Németh, L.: “Evaluation of built-in timbers by non-destructive testing”, 12th International Symposium on Nondestructive Testing of Wood, 2000, pp. 457-461.

(13) Clausen, A.; Ross, R. J.; Forsman, J. W.; Balachowski, J. D.: “Condition assessment of roof trusses of Quincy Mine Blacksmith Shop in Keweenaw National Historical Park”, USDA Forest Service, Forest Products Laboratory. Research Note FPL-RN-0281, 2001, 4 pp.

(14) Ross, R. J. y Hunt, M. O.: Stress wave timing non-destructive evaluation tools for inspecting historic structures. A guide for use and interpretacion, Gen. Tech. Rep. FPL-GTR-119. Madison, WI: US. Department of Agriculture, Forest Service, Forest Products Laboratory, 2000, 15 pp.

(15) Ross, R. J.; Pellerin, R. F.; Forsman J. W.; Erickson, J. R. y Lavinder, J. A.: Relationship between stress wave transmission time and compressive properties of timbers removed from service.

(16) Esteban, M.: Determinación de la capacidad resistente de la madera estructural de gran escuadría y su aplicación en estructuras existentes de madera de coníferas. Tesis Doctoral. Universidad Politécnica de Madrid (UPM), España, 2003.

(17) Arriaga, F.; Esteban, M. y Relea, E.: “Evaluation of the load carrying capacity of large cross section coniferous timber in standing structures”, Mater. Construcc., vol. 55 (280) (2005), pp. 43-52.

(18) Wang, X.; Ross, R. J.; Mattson, J. A.; Erickson, J. R.; Forsman, J. W.; Geske, E. A.; Wehr, M. A.: Several nondestructive evaluation techniques for assessing stiffness and MOE of small-diameter logs. Res. Paper FPL-RP-600. Madison, WI: US. Department of Agriculture, Forest Service, Forest Products Laboratory, 2001, 12 pp.

(19) Arriaga, F.; Íñiguez, G. y Esteban, M.: “Assessment of strength and stiffness properties using longitudinal stress wave on structural gross cross section timber of radiata pine”, 14th International Symposium on Nondestructive Testing of Wood. Eberswalde, Germany, 2005. ISBN 3-8322-3949-9.

(20) Arriaga, F.; Íñiguez, G.; Esteban, M. y Fernández-Golfín, J. I.: “Structural Tali timber (Erythrophleum ivorense A. Chef., Erythrophleum suavolens Brenan.): Assesment of strength and stiffness properties using visual and ultrasonic methods”, Holz als Roh und Werkstoff, 64 (2006), pp. 357-362. doi:10.1007/s00107-006-0100-5

(21) Fernández-Golfín, J. I.; Díez, M. R. y Hermoso, E.: “Relationships between grade determining properties of Spanish Scots and Laricio pine structural timber”, Mater. Construcc., 270 (53) (2003), pp. 45-55.

(22) Hermoso, E; Fernández-Golfín, J. I. y Díez, M. R.: “Evaluación de la clasificación resistente de la madera estructural mediante ultrasonidos”, 10º Congreso Nacional de Ensayos No Destructivos, Cartagena, España, actas, 2003, pp. 187-195.

(23) Machado, J. S.; Sardinha, R. y Cruz, H.: “Evaluation of lengthwise variation of mechanical properties by ultrasounds”, Proceedings of the 5th Conference on Timber Engineering, Montreaux (Switzerland), vol. 2 (1998), pp. 304-311.

(24) Kessel, M. H.; Plinke, B.; Augustin, R.; Huse, M.: “Strength grading of construction timber with large cross sections”, Proceedings of the 5th Conference on Timber Engineering, Montreaux (Switzerland), vol. 1 (1998), pp. 557-562.

(25) Kuklik, P. y Dolejs, J.: “Nondestructive evaluation of structural timber”, Proceedings of the 5th Conference on Timber Engineering, Montreaux (Switzerland), vol. 1 (1998), pp. 692-699.

(26) Kazemi Najafi, S. y Ebrahimi, Gh.: “Three methods for the prediction of longitudinal ultrasonic wave velocity in particleboard and fiberboard”, Proceedings of the 14th International Symposium on Nondestructive Testing of Wood. Eberswalde, Germany, 2005, ISBN 3- 8322-3949-9.

(27) Beall, F. C.: “Overview of the use of ultrasonic technologies in research on wood properties”, Wood Sci. and Technol., 36 (2002), pp. 197-212. doi:10.1007/s00226-002-0138-4

(28) Sandoz, J. L.: “Grading of construction timber by ultrasound”, Wood Science and Technology, 23 (1989), pp. 95-108. doi:10.1007/BF00350611

(29) Conde García, M.: Caracterización de la madera estructural de Pinus nigra Subsp. Salzmannii. Tesis Doctoral. Universidad Politécnica de Madrid (UPM), España, 2005.

(30) UNE-EN 408 (30):2004: Timber structures. Structural timber and glued laminated timber. Determination of some physical and mechanical properties.

(31) UNE-EN 384 (29):2004: Structural timber. Determination of characteristic values of mechanical properties and density.

(32) UNE 56.544:2003: Visual grading for structural sawn timber. Coniferous timber.

(33) UNE-EN 14081-1 (33):2005. Timber structures. Strength graded structural timber with rectangular cross section. Part 1: General requirements.

(34) UNE-EN 1310 (32):1997. Madera aserrada y en rollo. Método de medida de las singularidades.

Downloads

Published

2007-12-30

How to Cite

Conde García, M., Fernández-Golfín Seco, J. I., & Hermoso Prieto, E. (2007). Improving the prediction of strength and rigidity of structural timber by combining ultrasound techniques with visual grading parameters. Materiales De Construcción, 57(288), 49–59. https://doi.org/10.3989/mc.2007.v57.i288.64

Issue

Section

Research Articles