Co-precipitation of ettringite of rapid and slow formation. Consequence: Expansive Synergic Effect. Its demonstration by mortars and concretes

Authors

  • R. Talero Instituto de Ciencias de la Construcción Eduardo Torroja (IET-CSIC)

DOI:

https://doi.org/10.3989/mc.2011.51709

Keywords:

Gypsum attack, Metakaolin, Portland cements, “Rapid” and “slow” forming ettringites, synergies

Abstract


Several prior papers have shown that enough pozzolans can bring about rapid formation ettringite (from its Al2O3r-). It has likewise been found that the formation rate of this ettringite is higher than the of slower forming ettringite originating from OPC (from its C3A). In this context: What type of effect will they ultimately produce? Addition? Synergism? Antagonism? or perhaps Inversion of final expansive action?. To reply to these questions, 4 PC and 12 blended cements containing 20%, 30% or 40% metakaolin, were tested using the ASTM C 452-68, EN 196-1 and RT-86:ΔL tests and also concrete specimens. The experimental results have shows that the joint precipitation in a common sulfate medium, of ettringite from pozzolan and from OPC, was always more synergic than additive, and the technical consequences of the Expansive Synergic Effect may be classified as beneficial, adverse or indifferent according to its sulfates content in excess is more or less adequate.

Downloads

Download data is not yet available.

References

(1) Talero, R.: “Contribution to the Analytical and Physical-Chemical Study of the System: Pozozlanic Cements–Gypsum–Water (20º ± 3ºC)”, Ph.D. thesis, Madrid, Madrid Complutensis University, Spain, 20th nov. 1986.

(2) Talero, R.: “Ettringite from Portland cement origin and ettringite from pozzolan origin: Analogies, differences and semiquantitative relation with their respective origins. Interrogation”. 9th Intern. Congress on the Chemistry of Cement. Proceedings, vol. III, Theme II, pp. 93-100; New Delhi-India, nov. 1992.

(3) Talero, R.: “Comparative XRD analysis ettringite originating form pozzolan and form Portland cement”. Cem. Concr. Res., vol. 26 (1996), nº 8, pp. 1277-1283.

(4) Talero, R.: “Kinetochemical and morphological differentiation of ettringites by the Le Chatelier-Ansttet test”. Cem. Concr. Res., vol. 32 (2002), pp. 707-717.

(5) Talero, R.: “Kinetochemical and morphological differentiation of ettringites by metakaolin, Portland cements and the Le Chatelier- Ansttet test. Parameter: Vicat Needle Penetration”. Silicates Industriels, vol. 68, nº 11-12 (2003), pp. 137-146.

(6) Talero, R.: “Performance of the metakaolin and Portland cements forming ettringite: Kinetic and morphological differences”. 11th Intern. Congress on the Chemistry of Cement, Proceedings, vol. 2, pp.853-867, Durban-South Africa, 11-16 may 2003.

(7) Talero, R.: “Performance of metakaolin and portland cements in ettringite formation as determined by ASTM C 452-68: kinetic and morphological differences”. Cem. Concr. Res., vol. 32 (2005), pp. 1269-1284.

(8) Talero, R.: “Performance of metakaolin and portland cements in ettringite formation as determined by Le Chatelier-Ansttet test: Kinetic and morphological differences and new specification”. Silicates Industriels, vol. 72, nº 11-12 (2007), pp. 191-204.

(9) Talero, R.: “Kinetic and morphological differentiation of ettringites by metakaolín, Portland cements and ASTM C 452-68 test. Part I: Kinetic differentiation”. Mater. Construcc., vol. 58, nº 292 (2008), pp. 45-68.

(10) Talero, R.: “Kinetic and morphological differentiation of ettringites by metakaolin, portland cements and ASTM C 452-68 test. Part II: Morphological differentiation by SEM and XRD analysis”. Mater. Construcc., vol. 59, nº 293 (2009), pp. 17-34.

(11) Rahhal, V.; Irassar, E..; Trusilewicz, L.; Pedrajas, C.; Talero, R.: “Ettringite formation from pozozlan origin at early ages”. Construction and Building Materials, Ref. nº: CONBUILDMAT-D-11-00166 (en evaluación).

(12) Blondiau, L.: “Considérations diverses relatives à l’essai de résistance chimique au sulfate de calcium suivant le processus Le Chatelier–Ansttet”. Rev. Mat. Constr. Trav. Publics. III, nº 546 (1961), pp. 189-200.

(13) Talero, R.: “Sulphate resistance (high and moderated) of Portland cements. Accelerated tests: Specifications”, Monograph nº .399; Instº.C.C.”Eduardo Torroja”-CSIC, C/ Serrano Galvache nº. 4, 28033-MADRID-Spain, dec. 1989.

(14) Talero, R.; Bollati, M. R.; Hernández-O, F.: “Manufacturing non-traditional mortars and concretes by Portland cement, metakaolin and gypsum (15,05%)”. Mater. Construcc., vol. 49, nº 256 (1999), pp. 29-41.

(15) ASTM C 452-68 Standard. Standard Test Method for potential expansion of portland cement mortars exposed to sulfate. Annual Book of Astm Standards. Part 9, Cement; Lime; Gypsum, pp. 298-300, 1968.

(16) Sanz, J.; Madani, A.; Serratosa, J. M; Moya, L. S.; Aza, S.: “Aluminum-27 and silicon-29 magic angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation”. J. Am. Ceram. Soc., vol. 71, nº [10] (1988), pp. C418-C421.

(17) Mejía, R.; Talero, R.: “Chlorides absorption and penetration into cement mortars with pozzolanic additions”. 5th Iberoamerican Congress on Corrosion and Protection, Proceedings, Tenerife-Spain, 22-27 oct. 1995.

(18) Mejía, R.: “Contribution to the Analytical and Physical-Chemistry of the System: Portland Cements-Pozzolans-GBBS-Chloride-Water(at 20±3ºC)”. PhD Thesis, Ftad. CC. Químicas, Universidad Complutense de Madrid-Spain, May 29th 1997 (“in Spanish”).

(19) Mejía, R.; Delvasto, S.; Talero, R.: “A new pozzolan for high performance cementitious materials, Mater. Construcc., vol. 50, nº 260 (2000), pp. 5-13.

(20) Mejía, R.; Delvasto, S.; Talero, R.: “Chloride Portland measured by a modified permeability test in normal and blended cements”. Advances in Cement Research, vol. 15, nº 3 (2003), pp. 113-118.

(21) Jones, M. R.; Mcphee, D. E.; Chudek, L. A.; Hunter, G.; Lannegrand, R.; Talero, R.; Scrimgeour, S. N.: “Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel’s salt”. Cem. Concr. Res., vol. 33 (2003), pp. 177-182.

(22) Rahhal, V.: “Characterization of Pozzolanic Additions by Conduction Calorimetry”, PhD Thesis, Universidad Politécnica de Madrid- Spain, dec.12th 2002.

(23) Rahhal, V. F.; Cabrera, O.; Talero, R.; Delgado, A.: “Calorimetry of Portland cement with silica fume and gypsum additions”. J. Therm. Anal. Cal., vol. 87, nº 2 (2007), pp. 331-336.

(24) Talero, R.; Rahhal, V.: “Influence of aluminic pozzolans, quartz and gypsum additions on Portland cement hydration”. 12th Intern. Congress on the Chemistry of Cement. Proceedings, Montreal–Canada, 8-13 july 2007.

(25) Rahhal, V.; Talero, R.: “Calorimetry of portland cement with metakaolins, quartz and gypsum addtions”. J. Therm. Anal. Cal., vol. 91, nº 3 (2008), pp. 825-834.

(26) Talero, R.; Rahhal, V.: “Calorimetric comparison of portland cement containing silica fume and metakaolin: Is silica fume, like metakaolin, characterized by pozzolanic activity that is more specific than generic?”. J. Therm. Anal. Cal., vol. 96, nº 2 (2009), pp. 383-393.

(27) Rahhal, V.; Talero, R.: “Calorimetry of Portland cement with silica fume, diatomite and quartz additions”. Construction & Building Materials, vol. 23 (2009), pp. 3367-374.

(28) Rahhal, V.; Talero, R.: “Effect of three natural pozzolans on portland cement hydration”. Mater. Construcc., vol. 53, nº 269 (2003), pp. 29-40.

(29) Rahhal, V.; Talero, R.: “Influence of two different fly ashes on the hydration of portland cements”. J. Therm. Anal. Cal., vol. 78 (2004), pp. 191-205.

(30) Rahhal, V.; Talero, R.: “Fast physics-chemical and calorimetric characterization of fly ash”. J. Therm. Anal. Cal., vol. 96, nº 2 (2009), pp. 369-374.

(31) Rahhal, V.; Talero, R.: “Fast physics-chemical and calorimetric characterization of natural pozzolans and other aspects”. J. Therm. Anal. Cal., vol. 99, nº 2 (2010), pp. 479-486.

(32) Rahhal, V.; Bonavetti, V.; Delgado, A.; Pedrajas, C.; Talero, R.: “Scheme of the Portland Cement Hydration with Crystalline Mineral Admixtures and Other Aspects”. Silicates Industriels, vol. 74, nº 11-12 (2009), pp. 347-352.

(33) Rahhal, V.; Cabrera, O.; Delgado, A.; Pedrajas, C.; Talero, R.: “C4AF ettringita and calorific synergic effect contribution”. J. Therm. Anal. Cal., vol. 100, nº 1 (2010), pp. 57-63.

(34) Eitel, W.: “Recent investigations of the system: lime-alumina-calcium-sulfate-water and its importance in building research problems”. J. Am. Concr. Inst., vol. 28 (7) (1957), pp. 679-798.

(35) ASTM C 595M Standard: Standard Specification for Blended Hydraulic Cements.- ANNUAL BOOK OF ASTM STANDARDS, Section 4 Construction, vol. 04,01 Cement; Lime; Gypsum, pp. 291-296, 1995.

(36) Matousek, M.; Sauman, Z.: “Contribution to the hydration of expansive cement on the basis of metakaolinite”. Cem. Concr. Res., vol. 4, nº (1) (1974), pp. 113-122.

(37) Matuosek, M.; Sauman, Z.: A reply to P.K.Metha’s and Chatterji’s discussion on “Contribution to the hydration of expansive cement on the basis of the metakaolinite”. Cem. Concr. Res., vol. 4 (1974), pp. 687-688.

(38) Metha, P. K.: A discussion of the paper “Contribution to the hydration of expansive cement on the basis of metakaolinite” by M. Matousek and Z. Sauman. Cem. Concr. Res., vol. 4 (1974), pp. 683-684.

(39) Chatterji, S.: A discussion of the paper “Contribution to the hydration of expansive cement on the basis of metakaolinite” by M. Matousek and Z. Sauman. Cem. Concr. Res., vol. 4 (1974), pp. 687-688.

(40) Silva, P. S. de; Glasser, F.P.: “Phase relation in the system CaO-Al2O3-SiO2-H2O relevant to metakaolin – Calcium hydroxide hydration”. Cem. Concr. Res., vol. 23 (1993), pp. 627-639.

(41) Sabir, B. B.; Wild, S.; Bai, S. J.: “Metakaolin and calcined clays as pozzolans for concrete: a review”. Cement & Concrete Composites, vol. 23, nº 6 (2001), pp. 441-454.

(42) Vu, D. D.; Stroeven, P.; Bui, B. V.: “Strength and durability aspects of calcined kaolin—blended portland cement mortar and concrete”. Cement & Concrete Composites, vol. 23, nº 6 (2001), pp. 471-478.

(43) Gruber, K. A.; Ramlochan, T.; Boddy, A.; Hooton, R. H.; Thoma, M. D. A.: “Increasing concrete durability with high-reactivity metakaolin”. Cement & Concrete Composites, vol. 23, nº 6 (2001), pp. 479-484.

(44) Dow, C.; Glasser, F. P.: “Álcali release from crushed minerals and thermally activated constituents of metakaolín”. Advances in Cement Research, vol. 15, nº 4 (2003), pp. 137-143.

(45) EN 196-5 Standard: Métodos de ensayo de cementos; Parte 5, Ensayo de puzolanicidad para cementos puzolánicos (Pozzolanicity test for POZCs or Frattini test).- AENOR, Calle Génova No. 6; 28004-MADRID-Spain ? Pliego de Prescripciones Técnicas Generales para la Recepción de Cementos RC-75 (Decreto de la Presidencia del Gobierno 1964/1975 de 23 de mayo – B.O.E. nº 206 de 28 de agosto de 1975) = N. Frattini : Ann.Chim. Appl. 39 (1949), pp. 616-620.

(46) EN 196-3 Standard: Métodos de ensayo de cementos; Parte 3, Determinación del tiempo de fraguado (Times of Setting determination) y de la estabilidad de volumen (Le Chatelier´s needles). AENOR.

(47) EN 196-1 Standard: Métodos de ensayo de cementos; Parte 1, Determinación de resistencias mecánicas (Mechanical Strengths determination). AENOR.

(48) Instrucción de Hormigón Estructural EHE, 1998 (R.D. 2661/1998, de 11 de diciembre). Secretaría General Técnica, Servicio de Publicaciones, Ministerio de Fomento, Pº de la Castellana, Madrid, Spain.

(49) UNE 83308-86 and UNE 83308-93: Ensayos de hormigón. Determinación de la velocidad de propagación de los impulsos ultrasónicos. AENOR.

(50) Bollati, M. R.: “Ultrasound Energy: A new non-destructive test method for testing and designing concretes”. 6th. Intern. Symp. on Concrete Roads, pp.8-10, 83-92; oct., 1990, Madrid-Spain.

(51) ASTM C 845 Standard: Standard Specification for Expansive Hydraulic Cement.- ANNUAL BOOK OF ASTM STANDARDS; Section 4 Construction, vol. 04,01 Cement; Lime ; Gypsum, pp. 390-393, 1990.

(52) Talero, R.: “Patología del hormigón. Ataque rápido del yeso: 2ª Terapia preventiva. Óptimo de SO3: su determinación”. Ciclo de conferencias sobre: aplicaciones, patologías y terapias de estructuras, hormigón y otros materiales de contrucción, pp. 33-346; Confederación de Empresarios de la Construcción de Aragón, Cámara de Comercio e Industria de Zaragoza, 27 y 28 feb. y 1 de marzo de 1991.

(53) ASTM C 563 Standard: Standard Test method for Optimum SO3 in Hydraulic Cement Using 24-h Compressive Strength. Annual Book Of Astm Standards. Section 4 Construction, vol. 04,01 Cement; Lime; Gypsum, pp. 279-281, 1995.

(54) Instrucción para la Recepción de Cementos RC-08 (R.D. 956/2008 de 6 de junio; B.O.E. núm. 148, de 19 de junio de 2008.

(55) Pliego de Prescripciones Técnicas Generales para la recepción de Cementos RC-75 (Decreto de Presidencia del Gobierno 1964/1975de 23 de mayo; BOE nº. 206 de 28 de agosto de 1975).

(56) EN 450 Standard: Fly ashes as addition for concrete. Definitions, specifications and quality control. AENOR.

(57) PG3, Spanish Standard for Roads, 1994. Ministerio de Obras Públicas, Transportes, Comunicaciones y Medio Ambiente, Pº de la Castellana, Madrid, Spain.

Downloads

Published

2011-09-30

How to Cite

Talero, R. (2011). Co-precipitation of ettringite of rapid and slow formation. Consequence: Expansive Synergic Effect. Its demonstration by mortars and concretes. Materiales De Construcción, 61(303), 327–352. https://doi.org/10.3989/mc.2011.51709

Issue

Section

Research Articles