Caracterización de los morteros de relleno usados en diferentes túneles españoles

Autores/as

  • S. Cavalaro Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universidad Politécnica de Barcelona
  • A. Aguado Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universidad Politécnica de Barcelona

DOI:

https://doi.org/10.3989/mc.2012.03611

Palabras clave:

mortero, tensión umbral, viscosidad, tuneladora, túnel

Resumen


El objetivo principal del presente estudio es llevar a cabo la comparación de las dosificaciones de mortero de relleno empleadas en algunos de los grandes túneles españoles para rellenar el hueco anular dejado entre el terreno y el extradós de las dovelas. Inicialmente se hace una nueva propuesta experimental usando la composición y los materiales correspondientes a 6 dosificaciones usadas en 4 túneles. Los resultados obtenidos indican diferencias significativas en cuanto a la densidad, a la consistencia y a las propiedades reológicas. De acuerdo con las estimaciones realizadas, ello se traduce en diferencias de hasta un 67% en la potencia requerida del sistema de bombas de la tuneladora para inyectar el material. Por otro lado, se refleja una correlación entre el contenido de finos de la mezcla y las propiedades reológicas. Esa correlación puede servir para controlar y modificar dichas propiedades de manera fácil y rápida a pie de obra.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

(1) Széchy, K.: The art of tunnelling, p. 891, Budapest: Akadémiai Kiadó, (1970).

(2) Varios Autores: Ingeo de túneles, Serie: Ingeniería de Túneles, Libro 1, Madrid, España : Entorno Grafico, ISBN 84-921708-5-9, (1999).

(3) EFNARC: Specification and guidelines for the use of specialist products for soft ground tunnelling, European Federation of Producers and Contractors of Specialist Products for Structures, (2005).

(4) Cavalaro, S. H. P.: Evaluación de aspectos tecnológicos en túneles construidos con tuneladora y dovelas prefabricadas de hormigón, Tesis Doctoral, p. 320, E.T.S. Ingenieros de Caminos, Canales y Puertos. U.P.C. Barcelona, Spain, (2009).

(5) Blom, C. B. M.: Design philosophy of concrete linings for tunnels in soft soils, p. 184, Delft, The Netherlands : Delft University Press, (2002).

(6) Ding, W. Q.; Yue, Z. Q.; Tham, L. G.; Zhu, H. H.; Lee, C. F.; Hashimoto, T.: “Analysis of shield tunnel”, John Wiley and Sons Ltd. International Journal for Numerical and Analytical Methods in Geomechanics. (2004), vol. 28, nº1, pp. 59.

(7) Bezuijen, A.; Talmon, A.: “Grout properties and their influence on backfill grouting”, Proceedings of the 5th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, p. 187, Amsterdam, (2005).

(8) Bertomeu, J.: Libro de ruta para un ingeniero de turno de una tuneladora EPB, TFC presentado a la ETSICCPB, Barcelona, (2010).

(9) López, M. R.: Desarrollo de un dispositivo para la determinación de la aptitud del hormigón para el bombeo, TFC presentado a la ETSICCPB, (2011).

(10) Bezuijen, A.; Talmon, A. M.: “Grout, the foundation of a bored tunnel”, Thomas Telford Services Ltd, BGA International Conference on Foundations, Innovations, Observations, Design and Practice, p. 129, Dundee, United Kingdom, (2003).

(11) Talmon, A. M.; Aanen, L.; van der Zon, W. H.: “Stromingsgedrag groutinjectie Delft Cluster”, Delft Cluster, External research report. (2002).

(12) Talmon, A. M.; Bezuijen, A.: “Grouting the tail void of bored tunnels: the role of hardening and consolidation of grouts”, 5th International Symposium Geotechnical Aspects of Underground Construction in Soft Ground, Amsterdam, The Netherlands, 15-17 de junio de 2005. ISSMGE-TC28, (2005).

(13) Wallevik, J. E.: Rheology of particle suspensions, Doctoral Thesis, Trondheim, Norway : The Norwegian University of Science and Technology (NTNU), (2003).

(14) Blom, C. B. M.; Lokhorst, S.J.; A., Slenders B. M.; A., Kwast E.: Influences of physical grout flow around bored tunnels, Geotechnical Aspects of Underground Construction in Soft Ground, p. 253, London, England : Taylor & Francis Group, (2006).

(15) Bezuijen, A.; Talmon, A.M.: “Grout pressure measurements during tunnelling”, ITA Conference. Amsterdam : s.n., (2003).

(16) Bezuijen, A.; Talmon, A.M.: “Grout pressures around a tunnel lining. Influence of grout consolidation and loading on lining”, Tunnelling and Underground Space Technology, vol. 19, 4-5 (2004), pp. 443.

(17) Bezuijen, A.; Talmon, A. M.; Kaalberg, F. J.; Plugge, R.: “Field measurements of grout pressures during tunnelling of the Sophia Rail Tunnel”, Soils and Foundations, vol. 44, nº 1 (2004), pp. 39. http://dx.doi.org/10.3208/sandf.44.39

(18) Cavalaro, S. H. P.; Blom, C. B. M.; Walraven, J. C.; Aguado, A.: “Structural analysis of contact deficiencies in segmented lining”, Tunnelling and Underground Space Technology, (2011). http://dx.doi.org/10.1016/j.tust.2011.05.004

(19) Debrauwer, R.: “Groutbelasting op een tunnellining”, Eindrapport, Delft:TU Delft, (2002).

(20) Wallevik, J. E: Rheology of Particle Suspensions - Fresh Concrete, Mortar and Cement Paste with Various Types of Lignosulfonates, Ph.D. thesis, Department of Structural Engineering, The Norwegian University of Science and Technology, ISBN 82-471-5566-4, ISSN 0809-103X, pp. 401, (2003).

(21) Schowalter, W. R.; Christensen, G.: “Toward a rationalization of the slump test for fresh concrete: comparisons of calculations and experiments”, Journal of Rheology, vol. 42, nº 4 (1998), pp. 865. http://dx.doi.org/10.1122/1.550905

(22) Shi, Y-X.; Matsui, I.; Guo, Y-J.: “A study on the effect of fine mineral powders with distinct vitreous contents on the fluidity and rheological properties of concrete”, Cement and Concrete Research, vol. 34, nº 8 (2004), pp. 1381. http://dx.doi.org/10.1016/j.cemconres.2003.12.031

(23) Ferraris, C. F.; De Larrard, F.: “Modified Slump Test to Measure Rheological Parameters of Fresh Concrete”, Cement, Concrete and Aggregates, vol. 20, nº 2 (1998), pp. 241. http://dx.doi.org/10.1520/CCA10417J

(24) Logos, C.; Nguyen, Q. D.: “Effect of particle size on the flow properties of a South Australian coal-water slurry”, Powder Technology, vol. 88, nº 1 (1996), pp. 55. http://dx.doi.org/10.1016/0032-5910(96)03103-8

(25) Ota, M.; Miyamoto, T.: “Optimum particle size distribution of an electrorheological fluid”, Journal of Applied Physics, vol. 76, nº 9 (1994), pp. 5528. http://dx.doi.org/10.1063/1.357154

(26) White, F. M.: “Avoidance of blockages in concrete pumping process”, ACI Materials Journal, vol. 102, 3 (2005), 183 p.

(27) Río, O.; Rodríguez, A.; Nabulsi, S.; Alvarez, M.: “Pumping Quality Control Method Based on Online Concrete Pumpability Assessment”, ACI Materials Journal, vol. 108, 4 (2011), pp. 423.

(28) Kaplan, D.; De Larrard, F.; Sedran, T.: Fluid Mechanics, Mcgraw-Hill Series in Mechanical Engineering, Edición 7 (2010), pp. 896.

(29) Kaplan, D.; de Larrard, F.; Sedran, T.: “Design of concrete pumping circuit”, ACI Materials Journal, vol. 102, nº 2 (2005), pp. 110.

(30) Geankoplis, C. J.: “Principles of momentum transfer and applications”, Transport process and unit operations. (1995). pp. 114.

(31) Belem, T.; Benzaazoua, M.: “An overview of the use of paste backfill technology as a ground support method in cut-and-fill mines”, In: 5th International Symposium on ground support in mining and underground construction, Perth, Western Australia, Australia : s.n., 28-30 de September de 2004 (2004). pp. 637.

Descargas

Publicado

2013-03-30

Cómo citar

Cavalaro, S., & Aguado, A. (2013). Caracterización de los morteros de relleno usados en diferentes túneles españoles. Materiales De Construcción, 63(309), 65–78. https://doi.org/10.3989/mc.2012.03611

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

<< < 1 2