Materiales de Construcción, Vol 66, No 322 (2016)

Optimal fluorite/gypsum mineralizer ratio in Portland cement clinkering


https://doi.org/10.3989/mc.2016.05515

J. I. Tobón
Departamento de Materiales y Minerales. Universidad Nacional de Colombia, Colombia

M. F. Díaz-Burbano
I&D Materiales Cementos Argos S.A., Colombia

O. J. Restrepo-Baena
Departamento de Materiales y Minerales. Universidad Nacional de Colombia, Colombia

Abstract


This paper presents an analysis of the joint effect of fluorite and gypsum as mineralizers in the manufacture of Portland cement. A laboratory- scale Box-Behnken statistical design was used to quantify the effects of the explanatory variables fluorite content (0.00, 0.25, 0.50, and 0.75%), fluorite/gypsum ratio (2/15, 1/3 and 8/15), and clinkering temperature (1250, 1300, and 1350 °C) on the response variable free CaO content in the clinker produced. The clinker was characterized by the ethylene method, XRD, DSC and optical microscopy. Free CaO decreases of 81% and 56% were found in the mineralized clinker, compared to the same clinker without mineralizers, at 1300 °C and 1250 °C, respectively. Petrographic analysis showed that at lower temperatures, the amount of alite in the mineralized clinker was higher than the amount of alite in the clinker without mineralizers. The best condition was found for the fluorite/gypsum ratio of 2/15.

Keywords


Mineralizers; Fluorite; Gypsum; Clinker; Clinkering

Full Text:


HTML PDF XML

References


1. Taylor, H.F.W. (1990) Cement Chemistry, Academia Press, Inc. New York.

2. Hasanbeigi, A.; Price, L.; Lin, E. (2012) Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews 16, 6220–6238. http://dx.doi.org/10.1016/j.rser.2012.07.019

3. Lawrence, C. (1988) Lea's chemistry of cement and concrete. Cap 9: Production of Low-Energy Cements. 4th ed.

4. Chatterjee, A.K. (2011) Chemistry and engineering of the clinkerization process — Incremental advances and lack of breakthroughs. Cem. Concr. Res. 41, 624–641. http://dx.doi.org/10.1016/j.cemconres.2011.03.020

5. Van Oss, HG.; Padovani, A.C. (2003) Cement manufacture and the environment, part II: environmental challenges and opportunities. J. Ind. Ecol. 7, 93–126. http://dx.doi.org/10.1162/108819803766729212

6. Puertas, F.; García-Díaz, I.; Barba, A.; Gazulla, M.F.; Palacios, M.; Gómez, M.P.; Martínez-Ramírez, S. (2008) Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Comp. 30, 798–805. http://dx.doi.org/10.1016/j.cemconcomp.2008.06.003

7. Garnet, E. (2004) Industrially interesting approaches to ''low CO2'' cements. Cem. Concr. Res. 34,1489–98. http://dx.doi.org/10.1016/j.cemconres.2004.01.021

8. World Business Council for Sustainable Development (WBCSD)/International Energy Agency (IEA). (2009a) Cement Technology Roadmap 2009—Carbon emissions reductions up to 2050. Available: www.iea.org/papers/2009/ Cement_Roadmap.pdfS.

9. Gineys, N.; Aouad, G.; Sorrentino, F.; Damidot, D. (2011) Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn. Cem. Concr. Res. 41, 1177–1184. http://dx.doi.org/10.1016/j.cemconres.2011.07.006

10. García-Díaz, I.; Palomo, J.G.; Puertas, F. (2011) Belite cements obtained from ceramic wastes and the mineral pair CaF2/CaSO4. Cem. Concr. Comp. 33, 1063–1070. http://dx.doi.org/10.1016/j.cemconcomp.2011.06.003

11. Ying-Liang Chen; Juu-En Chang; Pai-Haung Shih; Ming-Sheng Ko; Yi-Kuo Chang; Li-Choung Chiang. (2010) Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture. J. Env. Manag. 91, 1892–1897. http://dx.doi.org/10.1016/j.jenvman.2010.04.006 PMid:20493627

12. Emanuelson, A.; Hansen, S.; Viggh, E. (2003) A comparative study of ordinary and mineralised Portland cement clinker from two different production units Part I: Composition and hydration of the clinkers. Cem. Concr. Res. 33 [10] 1613–1621. http://dx.doi.org/10.1016/S0008-8846(03)00115-7

13. Emanuelson, A.; Landa-Cánovas, A.; Hansen, S. (2003) A comparative study of ordinary and mineralized Portland cement clinker from two different production units Part II: Characteristics of the calcium silicates. Cem. Concr. Res. 33, 1623–1630. http://dx.doi.org/10.1016/S0008-8846(03)00114-5

14. Tongsheng Zhang; Xiangyang Liu; Jiangxiong Wei; Qijun Yu. (2014) Influence of preparation method on the performance of ternary blended cements. Cem. Concr. Comp. 52, 18–26. http://dx.doi.org/10.1016/j.cemconcomp.2014.04.005

15. Komnitsas, K.; Zaharaki, D. (2007) Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering. 20, 1261–1277. http://dx.doi.org/10.1016/j.mineng.2007.07.011

16. Péra, J.; Ambroise, J. (2004) New applications of calcium sulfoaluminate cement. Cem. Concr. Res. 34, 671–676. http://dx.doi.org/10.1016/j.cemconres.2003.10.019

17. Ghafari, E.; Costa, H.; Júlio, E.; Portugal, A.; Duraes, L. (2014) The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete. Mat. Design. 59, 1–9. http://dx.doi.org/10.1016/j.matdes.2014.02.051

18. Moir, G.K.; Glasser, F.P. (1992) Mineralisers, modifiers and activators in the clinkering process, Proceedings of the 9th International Congress on the Chemistry of Cement, New Delhi 1992, vol. 1, National Council for Cement and Building Materials, New Delhi, 25–152.

19. Stephan, D.; Mallmann, R.; Knöfel, D.; Härdtl, R. (1999) High intakes of Cr, Ni, and Zn in clinker art I. Influence on burning process and formation of phases. Cem. Concr. Res. 29, 1949–1957. http://dx.doi.org/10.1016/S0008-8846(99)00195-7

20. Kolovos, K.; Tsivilis, S.; Kakali, G. (2002) The effect of foreign ions on the reactivity of the CaO–SiO2–Al2O3–Fe2O3 system Part II: Cations. Cem. Concr. Res. 32, 463–469. http://dx.doi.org/10.1016/S0008-8846(01)00705-0

21. Trezza, M.A.; Scian, A.N. (2007) Waste with chrome in the Portland cement clinker production. J. Haz. Mat. 147, 188–196. http://dx.doi.org/10.1016/j.jhazmat.2006.12.082 PMid:17292542

22. Xian-Wei Ma; Hu-Xing Chen; Pei-Ming Wang. (2010) Effect of CuO on the formation of clinker minerals and the hydration properties. Cem. Concr. Res. 40, 1681–1687. http://dx.doi.org/10.1016/j.cemconres.2010.08.009

23. Kacimi, L.; Simon-Masseron, A.; Ghomari, A.; Derriche, Z. (2006) Reduction of clinkerization temperature by using phosphogypsum. J. Haz. Mat. B137, 129–137. http://dx.doi.org/10.1016/j.jhazmat.2005.12.053 PMid:16533556

24. Kacimi, L.; Simon-Masseron, A.; Ghomari, A.; Derriche, Z. (2006) Influence of NaF, KF and CaF2 addition on the clinker burning temperature and its properties. C. R. Chimie. 9, 154–163. http://dx.doi.org/10.1016/j.crci.2005.10.001

25. Syal, S.K.; Kataria, S.S. (1981) Optimization of burning characteristics of raw meal for fuel economy by special mineralizer. World cement technology.12 [6], 279–285.

26. Restrepo, O.I.; Tobón, J.I.; Restrepo, O.J. (2007) Efecto de algunas adiciones minerales colombianas en la fabricación de clínker para cemento Pórtland I. Dyna. 74 [152], 263–674.

27. Kolovos, K.; Loutsi, P.; Tsivilis, S.; Kakali, G. (2001) The effect of foreign ions on the reactivity of the CaO-SiO2- Al2O3-Fe2O3 system Part I. Anions. Cem. Concr. Res. 31, 425–429. http://dx.doi.org/10.1016/S0008-8846(00)00461-0

28. Akin A.I. (1999) Effect of CaF2 and MgO on sintering of cement clinker. Cem. Concr. Res. 29, 1847–1850. http://dx.doi.org/10.1016/S0008-8846(99)00151-9

29. Schoon, J.; Vergari, A.; De Buysser, K.; Van Driessche, I.; De Belie, N. (2013) Fines extracted from porphyry and dolomitic limestone aggregates production: MgO as fluxing agent for a sustainable Portland clinker production. Construc. Build. Mat. 43, 511–522. http://dx.doi.org/10.1016/j.conbuildmat.2013.02.046

30. Blanco, M.T.; Puertas, F.; Vazquez, T.; Palomo. A. (1996) Modelling of the burnability of white cement raw mixes made with CaF2 and CaSO4. Cem. Concr. Res. 26 [3], 457–464. http://dx.doi.org/10.1016/S0008-8846(96)85033-2

31. Blanco-Varela, M.T.; Palomo, A.; Puertas, F.; Vázquez, T. (1995) Influencia de la incorporación conjunta del CaF2 y del CaSO4 en el proceso de clinkerización. Obtención de nuevos cementos. Mater. Construcc. 45 [239], 29–47. http://dx.doi.org/10.3989/mc.1995.v45.i239.551

32. Dominguez, O.; Torres-Castillo, A.; Flores-Velez, L.M.; Torres, R. (2010) Characterization using thermomechanical and differential thermal analysis of the sinterization of Portland clinker doped with CaF2. Materials Characterization. 61, 459–466. http://dx.doi.org/10.1016/j.matchar.2010.02.002

33. Murray, R.J.; Brown, A.W. (1978) Improvements in Hydraulic Cements, U.K. Patent no. 1498057.

34. Grillo-Renó, M.L.; Martins-Torres, F.; Da Silva, R.J.; Conceição Soares Santos, J.J.; Motta Melo, M. (2013) Exergy analyses in cement production applying waste fuel and mineralizer. Energy Conversion and Management. 75, 98–104. http://dx.doi.org/10.1016/j.enconman.2013.05.043

35. Blanco-Varela, M.T.; Vázquez, T. (1981) Ahorro de energía en la clinkerización empleando CaF2 y CaSO4 como mineralizadores. Estudio de la fluorellestadita (3C2S.CaSO4.CaF2). Mater. Construcc. 181, 55–64. http://dx.doi.org/10.3989/mc.1981.v31.i181.1020

36. Giménez-Molina S.; Blanco-Varela, MT. (1995) Solid state phases relationship in the CaO–SiO, Al2O, CaF2– CaSO4 system. Cem Concr Res. 25, 870–82. http://dx.doi.org/10.1016/0008-8846(95)00078-Q

37. Gartner, E.; Hirao, H. (2015) A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 78, Part A, 126–142. http://dx.doi.org/10.1016/j.cemconres.2015.04.012




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es