Urban structure degradation caused by growth of plants and microbial activity





Concrete, Organic acids, Weathering, Waste treatment, Durability


The purpose of this study was to isolate microorganisms associated to surface-affected concrete structures and to measure the in vitro dissolution of concrete based on the release of elements such as calcium and silicon. Although many microorganisms were detected only a fungus was capable of significantly decreasing the culture medium pH and releasing both elements. The molecular characterization allowed to identify the microorganism as Aspergillus carbonaurius, a citric-acid producing fungus that dissolved concrete in the in vitro test. After seven days of incubation, the soluble calcium concentration in the uninoculated culture medium containing concrete was 172.3 mg/L, while in the inoculated medium it was 525.0 mg/L. The soluble silicon concentration in the uninoculated medium was 10.3 mg/L, while in the inoculated medium it was 50.1 mg/L. These findings showed that plants and microorganisms rendered a synergistic effect accelerating the biodeterioration of concrete.


Download data is not yet available.


Cwalina, B. (2008) Biodeterioration of Concrete. J. Archit. Civ. Eng. Environ. 4, 133–140.

Larreur-Cayol, S.; Bertron, A.; Escadeillas, G. (2011) Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cem. Concr. Res. 41[8], 882–892, 2011. https://doi.org/10.1016/j.cemconres.2011.04.007

Warscheid, T.; Braams, J. (2000) Biodeterioration of stone: A review," Int. Biodeterior. Biodegrad. 46[4], 343–368. https://doi.org/10.1016/S0964-8305(00)00109-8

Okabe, S.; Odagiri, M.; Ito, T.; Satoh, H. (2007) Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl. Environ. Microbiol. 73[3], 971–980. https://doi.org/10.1128/AEM.02054-06 PMid:17142362 PMCid:PMC1800771

Veniale, F.; Setti, M.; Lodola, S. (2008) Diagnóstico del deterioro de la piedra en el patrimonio construido. Datos y perspectivas. Mater. Construcción. 58, 11–32. https://doi.org/10.3989/mc.2008.v58.i289-290.85

Westall, F.; Cornel, E.J:, Southam, G.; Grassineau, N., Colas, M., Cockcell, C., Lammer, H. (2006) Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos. Trans. R. Soc. B Biol. Sci. 361[1474], 1857–1876.

Baskar, S.; Baskar, R.; Mauclaire, L.; McKenzie, J. A. (2006) Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India. Curr. Sci., 90[1], 58–64.

Epure, L.; Meleg, I. N.; Munteanu, C.-M.; Roban, R. D.; Moldovan, O. T. (2014) Bacterial and Fungal Diversity of Quaternary Cave Sediment Deposits. Geomicrobiol. J. 31[2] 116–127. https://doi.org/10.1080/01490451.2013.815292

Papida, S.; Murphy, W.; May, E. (2000) Enhancement of physical weathering of building stones by microbial populations. Int. Biodeterior. Biodegrad. 46[4], 305–317. https://doi.org/10.1016/S0964-8305(00)00102-5

Windt, L. de; Bertron, A.; Larreur-Cayol, S.; Escadeillas, G. (2015) Interactions between hydrated cement paste and organic acids: Thermodynamic data and speciation modeling. Cem. Concr. Res. 69, 25–36. https://doi.org/10.1016/j.cemconres.2014.12.001

Kip, N.; Veen, J. A. van (2015) The dual role of microbes in corrosion. ISME J. 9[3], 542–551. https://doi.org/10.1038/ismej.2014.169 PMid:25259571 PMCid:PMC4331587

Gu, J. D.; Ford, T. E.; Berke, N. S.; Mitchell, R. (1998) Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad. 41[2], 101–109. https://doi.org/10.1016/S0964-8305(98)00034-1

Giannantonio, D. J.; Kurth, J. C.; Kurtis, K. E.; Sobecky, P. A. (2009) Effects of concrete properties and nutrients on fungal colonization and fouling. Int. Biodeterior. Biodegrad. 63[3], 252–259. https://doi.org/10.1016/j.ibiod.2008.10.002

Noeiaghaei, T.; Mukherjee, A.; Dhami, N.; Chae, S. R. (2017) Biogenic deterioration of concrete and its mitigation technologies. Constr. Build. Mater. 149, 575–586. https://doi.org/10.1016/j.conbuildmat.2017.05.144

Wei, S.; Sanchez, M.; Trejo, D.; Gillis, C. (2010) Microbial mediated deterioration of reinforced concrete structures. Int. Biodeterior. Biodegrad. 64[8], 748–754. https://doi.org/10.1016/j.ibiod.2010.09.001

Shi, C. (2017) A review on concrete surface treatment Part I : Types and mechanisms. Constr. Build. Mater. 132[1], 578–590.

Zhang, J. L.; Wu, R.S; Li, M.Y; Zhong, J.Y; Deng, X.; Liu, B.; Han, X.N.; Xing, F. (2016). Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. 100[15], 6661–6670. https://doi.org/10.1007/s00253-016-7382-2

Wei, S.; Jiang, Z.; Liu, H.; Zhou, D.; Sanchez-Silva, M. (2013) Microbiologically induced deterioration of concrete - A review. Brazilian J. Microbiol. 44[4], 1001–1007. https://doi.org/10.1590/S1517-83822014005000006 PMid:24688488 PMCid:PMC3958164

Rajakaruna, P. S.; Wilber, G. G. (2010). Microbial deterioration of concrete infrastructure. MSc Thesis, Oklahoma State University, Stillwater, Oklahoma.

Sun, X.; Jiang, G.; Bond, P. L.; Keller, J.; Yuan, Z. (2015) A novel and simple treatment for control of sulfide induced sewer concrete corrosion using free nitrous acid. Water Res. 70, 279–287. https://doi.org/10.1016/j.watres.2014.12.020 PMid:25543238

Bertron, A. (2014) Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Mater. Struct. 47[11], 1787–1806. https://doi.org/10.1617/s11527-014-0433-1

Rodrigues, F.; Carvalho, M. T.; Evangelista, L.; De Brito, J. (2013) Physical-chemical and mineralogical characterization of fine aggregates from construction and demolition waste recycling plants. J. Clean. Prod. 52, 438–445. https://doi.org/10.1016/j.jclepro.2013.02.023

Mejía, E.; Navarro, P.; Vargas, C.; Tobón, J. I.; Osorio, W. (2016) Characterization of construction and demolition waste in order to obtain Ca and Si using a citric acid treatment Caracterización de un residuo de construcción y demolición para la obtención de Ca y Si mediante tratamiento con ácido cítrico. DYNA. 83, 94–101. https://doi.org/10.15446/dyna.v83n199.56394

Angulo, S. C.; Ulsen, C.; John, V. M.; Kahn, H.; Cincotto, M. A. (2009) Chemical-mineralogical characterization of C&D waste recycled aggregates from Sao Paulo, Brazil. Waste Manag. 29[2], 721–730. https://doi.org/10.1016/j.wasman.2008.07.009 PMid:18926692

Limbachiya, M. C.; Marrocchino, E.; Koulouris, A. (2007) Chemical-mineralogical characterisation of coarse recycled concrete aggregate. Waste Manag. 27[2], 201–208. https://doi.org/10.1016/j.wasman.2006.01.005 PMid:16574393

Sanchez-Silva, M.; Rosowsky, D. V. (2008) Biodeterioration of Construction Materials: State of the Art and Future Challenges. J. Mater. Civ. Eng. 20[5] 352–365. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:5(352)

Gong, C.; Zhou, X.; Ji, L.; Dai, W.; Lu, L.; Cheng, X. (2018) Effects of limestone powders on pore structure and physiological characteristics of planting concrete with sulfoaluminate cement. 162[20], 314–320. https://doi.org/10.1016/j.conbuildmat.2017.10.012

Schoch, C. L.; Seifert, K. A.; Huhndorf, S.; Robert, V.; Spouge, J. L.; Levesque, C. A. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS. 109[16], 6241–6246. https://doi.org/10.1073/pnas.1117018109 PMid:22454494 PMCid:PMC3341068

Mejía, E.; Tobón, J. I.; Osorno, L.; Osorio, W. (2015) Mineralogical characterization of urban construction and demolition waste : potential use as a nutrient source for degraded soils. WIT Transactions on Ecology and The Environment. 194, 399–413. https://doi.org/10.2495/SC150351

Tanaca, H. K.; Dias, C. M. R.; Gaylarde, C. C.; John, V. M.; Shirakawa, M. A. (2011) Discoloration and fungal growth on three fiber cement formulations exposed in urban, rural and coastal zones. Build. Environ. 46[2], 324–330. https://doi.org/10.1016/j.buildenv.2010.07.025

Tobón, J. I.; Angel, E.; Gomez, V. (2006) Medellín behavior of concretes elaborated with different stony aggregates of the surroundings of medellin. DYNA. 74[152], 251–262.

Puente, M. E.; Li, C. Y.; Bashan, Y. (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol. 6[5], 643–650. https://doi.org/10.1055/s-2004-821101 PMid:15375736

Collignon, C.; Uroz, S.; Turpault, M. P.; Frey-Klett, P. (2011) Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol. Biochem. 43[10], 2012–2022. https://doi.org/10.1016/j.soilbio.2011.05.008

Lian, B.; Chen, Y.; Zhu, L.; Yang, R. (2008) Effect of Microbial Weathering on Carbonate Rocks. Earth Sci. Front. 15[6]; 90–99. https://doi.org/10.1016/S1872-5791(09)60009-9

Uroz, S.; Oger, P.; Lepleux, C.; Collignon, C.; Frey-Klett, P.; Turpault, M. P. (2011) Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res. Microbiol. 162[9], 821–831. https://doi.org/10.1016/j.resmic.2011.01.013

Lepleux, C.; Uroz, S.; Collignon, C.; Churin, J. L.; Turpault, M. P.; Frey-Klett, P. (2013) A short-term mineral amendment impacts the mineral weathering bacterial communities in an acidic forest soil. Res. Microbiol. 164[7],. 729–739. https://doi.org/10.1016/j.resmic.2013.03.022 PMid:23583355

Wallace, K. J. (2007) Classification of ecosystem services: Problems and solutions. Biol. Conserv. 139[ 3–4], 235–246. https://doi.org/10.1016/j.biocon.2007.07.015



How to Cite

Mejía, E., Tobón, J. I., & Osorio, W. (2019). Urban structure degradation caused by growth of plants and microbial activity. Materiales De Construcción, 69(333), e177. https://doi.org/10.3989/mc.2019.09517



Research Articles