Evaluation of cements obtained by alkali-activated coal ash with NaOH cured at low temperatures
DOI:
https://doi.org/10.3989/mc.2018.10117Keywords:
Fly ash, Temperature, Alkali-activated cement, Particles size distribution, Compressive strengthAbstract
The temperature at which the alkaline activation process takes place is a significant factor in the evolution of the mechanical properties of coal ash cementitious base material. In this work, the influence of temperature (8 a 38 °C) and curing time (3 and 28 days) on the mechanical properties of the alkaline synthesis of two coal ashes was evaluated through the study of the mineralogical evolution of the cementitious phases by XRD and FTIR. We found that the type of zeolite, a synthesis product, depends on the study factors. For values above 28 °C and at least 7 days, alkalinely activated cements with compressive strength above 20 MPa were achieved. Other parameters, such as SiO2/Al2O3 ratio, percentage of unburned coal and particle-size distribution, should be taken into account in the variation of mechanical performance.
Downloads
References
Palomo, A.; Krivenko, P.; García-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation : new analytical perspectives. Mater. Construcc. 64 [315], 1–24. https://doi.org/10.3989/mc.2014.00314
Torres-carrasco, M.; Palomo, J.G.; Puertas, F. (2014) Sodium silicate solutions from dissolution of glass wastes. Statistical analysis. Mater. Construcc. 64 [314], 1–14. https://doi.org/10.3989/mc.2014.05213
Mejía, JM.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construcc. 63 [311], 361–75.
Temuujin, J.; Minjigmaa, A.; Bayarzul, U.; Kim, D.S.; Lee, S. Ho.; Lee, H.J.; Ruescher, C.H.; MacKenzie, K.J.D. (2017) Properties of geopolymer binders prepared from milled pond ash. Mater. Construcc. 67 [328], 1–11. https://doi.org/10.3989/mc.2017.07716
Luna, Y.; Cornejo, A.; Leiva, C.; Vilches Arenas, L.F.; Fernández Pereira, C. (2015) Properties of fly ash and metakaolín based geopolymer panels under fire resistance tests. Mater. Construcc. 65 [319], 1–8.
Palomo, A.; Grutzeck, M.W.; Blanco, M.T. (1999) Alkali-activated fly ashes A cement for the future. Cem. Concr. Res. 29 [8], 1323–9. https://doi.org/10.1016/S0008-8846(98)00243-9
Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.; Meikle, S. (2016) Development of geopolymer mortar under ambient temperature for in situ applications. Constr. Build. Mater. 120, 198–211. https://doi.org/10.1016/j.conbuildmat.2016.05.085
Mustafa Al Bakria, A.M.; Kamarudin, H.; Bin Hussain, M.; Khairul Nizar, I.; Zarina, Y.; Rafiza, A.R. (2011) The effect of curing temperature on physical and chemical properties of geopolymers. Phys. Procedia. 22, 286–91. https://doi.org/10.1016/j.phpro.2011.11.045
Temuujin, J.; Williams, R.P.; Van Riessen, A. (2009) Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J. Mater. Process. Technol. 209 [12-13], 5276–80. https://doi.org/10.1016/j.jmatprotec.2009.03.016
Davidovits, J. (1980) Ceramic-ceramic composite material and production method. United States Patent. 1–6.
Chithiraputhiran, S.; Neithalath, N. (2013) Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr. Build. Mater. 45, 233–42. https://doi.org/10.1016/j.conbuildmat.2013.03.061
Cioffi, R.; Maffucci, L.; Santoro, L. (2003) Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue. Resour. Conserv. Recycl. 40 [40], 27–38. https://doi.org/10.1016/S0921-3449(03)00023-5
Provis, J.L.; Lukey, G.C.; Van Deventer, J.S.J. (2005) Reviews. Do geopolymers actually contain nanocrystalline zeolites? a reexamination of existing results. Chem. Mater.17 [12], 3075–85. https://doi.org/10.1021/cm050230i
Rovnaník, P. (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 24 [7], 1176–83. https://doi.org/10.1016/j.conbuildmat.2009.12.023
Hoyos-Montilla, Ary A.; Puertas, F.; Tobón, Jorge I. (2018) Microcalorimetric study of the effect of calcium hydroxide and temperature on the alkaline activation of coal fly ash. J. Therm. Anal. Calorim. 131 [3].
Diamond, S. (1983) On the glass present in low-calcium and in high-calcium flyashes. Cem. Concr. Res. 13 [4], 459–64. https://doi.org/10.1016/0008-8846(83)90002-9
Mozgawa, W.; Sitarz, M. (2002) Vibrational spectra of aluminosilicate ring structures. J. Mol. Struct. 614 [1–3], 273–9. https://doi.org/10.1016/S0022-2860(02)00261-2
García Lodeiro, M.I. (2008) Compatibilidad de geles cementantes C-S-H y N-A-S-H. Estudios en muestras reales y en polvos sintéticos. Thesis PhD, (2008).
Criado, M.; Fernández-Jiménez, A.; Palomo, A. (2007) Alkali activation of fly ash: Effect of the SiO2/Na2O ratio : Part I: FTIR study. Microporous Mesoporous Mater. 106 [1-3], 180–91. https://doi.org/10.1016/j.micromeso.2007.02.055
Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lukey, G.C. (2003) The characterisation of source materials in fly ashbased geopolymers. Mater Lett. 57 [7], 1272–80. https://doi.org/10.1016/S0167-577X(02)00971-0
Palomo, A.; López de la Fuente, J.I.; (2003) Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes - Part I. Stabilisation of boron. Cem. Concr. Res. 33 [2]:281–8. https://doi.org/10.1016/S0008-8846(02)00963-8
Fernández-Jiménez, A.; Palomo, A. (2003) Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel. 82 [18], 2259–65. https://doi.org/10.1016/S0016-2361(03)00194-7
Lee, W.K.W.; Van Deventer, J.S.J.; (2003) Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous. Aluminosilicates. Langmuir. 19 [21], 8726–34. https://doi.org/10.1021/la026127e
Fernández-Jiménez, A.; Palomo, A. (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater. 86 [1-3], 207–14. https://doi.org/10.1016/j.micromeso.2005.05.057
Mozgawa, W.; Król M.; Barczyk, K. (2011) FT-IR studies of zeolites from different structural groups. Chemik. 65 [7], 671–4.
Mo, B.H.; Zhu, H.; Cui, X.M.; He, Y.; Gong, S.Y. (2014) Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl. Clay Sci. 99, 144–8. https://doi.org/10.1016/j.clay.2014.06.024
Soutsos, M.; Boyle, A.P.; Vinai, R.; Hadjierakleous, A.; Barnett, S.J. (2016) Factors influencing the compressive strength of fly ash based geopolymers. Constr. Build. Mater. 110, 355–68. https://doi.org/10.1016/j.conbuildmat.2015.11.045
Palomo, A.; Criado, M. (2006) Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Mater. Construcc. 281 [56], 51–65.
Kumar, R.; Kumar, S.; Mehrotra, S.P. (2007) Towards sustainable solutions for fly ash through mechanical activation. Resour. Conserv. Recycl. 52 [2], 157–79. https://doi.org/10.1016/j.resconrec.2007.06.007
Kovalchuk, G.; Palomo, A.; Fernández-Jiménez, A. (2008) Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Mater. Construcc. 58 [291], 35–52.
Diaz, E.I.; Allouche, E.N.; Eklund, S. (2010) Factors affecting the suitability of fly ash as source material for geopolymers. Fuel. 89 [5], 992–6. https://doi.org/10.1016/j.fuel.2009.09.012
Izquierdo, M. (2016) Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength. Mater. construcc. 66 [324], 1–14.
Messina, F.; Ferone, C.; Colangelo, F.; Cioffi, R. (2015) Low temperature alkaline activation of weathered fly ash: Influence of mineral admixtures on early age performance. Constr. Build. Mater. 86, 169–77. https://doi.org/10.1016/j.conbuildmat.2015.02.069
Fernandez-Jiménez, A.; Puertas, F. (1997) Alcali-activated slag cements: kinetic studies. Cem. Concr. Res. 27 [3], 359–68. https://doi.org/10.1016/S0008-8846(97)00040-9
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.