Materiales de Construcción, Vol 66, No 323 (2016)

Infrared exploration of the architectural heritage: from passive infrared thermography to hybrid infrared thermography (HIRT) approach

S. Sfarra
Las.E.R. Laboratory, Dept. of Industrial and Information Engineering and Economics, University of L’Aquila, Italy

E. Marcucci
Las.E.R. Laboratory, Dept. of Industrial and Information Engineering and Economics, University of L’Aquila, Italy

D. Ambrosini
Las.E.R. Laboratory, Dept. of Industrial and Information Engineering and Economics, University of L’Aquila, Italy

D. Paoletti
Las.E.R. Laboratory, Dept. of Industrial and Information Engineering and Economics, University of L’Aquila, Italy


Up to now, infrared thermographic approaches have been considered either passive or active. In the latter case, the heat flux is historically attributed to a non-natural heat source. The use of the sun has recently been incorporated into the active approach thanks to multi-temporal inspections. In this paper, an innovative hybrid thermographic (HIRT) approach is illustrated. It combines both the time component and the solar source to obtain quantitative information such as the defect depth. Thermograms were obtained by inspecting the facade of the Santa Maria Collemaggio church (L’Aquila, Italy), whereas quantitative results related to the sub-superficial discontinuities were obtained thanks to the use of advanced techniques. Experimental results linked to passive approach (i.e., the mosaicking procedure of the thermograms) performed by selecting a set of historic churches are also included in order to explain, when and where, the hybrid procedure should be used.


Image Analysis; Physical Properties; Temperature; Thermal Analysis; Limestone

Full Text:



1. Albatici, R.; Tonelli, A.; Chiogna, M. (2015) A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance. Appl. Energ. 141, 218- 228.

2. Ohlsson, K.E.A.; Olofsson, T. (2014) Quantitative infrared thermography imaging of the density of heat flow rate through a building element surface. Appl. Energ. 134, 499-505.

3. Grinzato, E.; Vavilov, V.; Kauppinen, T. (1998) Quantitative infrared thermography in buildings. Energ. Buildings 29, 1-9.

4. Goldstein, R. J. (1988) Quantitative Thermography: Estimate of Building Envelope Heat Loss, in Theory and Practice of Radiation Thermometry (eds D.P. DeWitt and G.D. Nutter), John Wiley & Sons, Inc., Hoboken, NJ, USA.

5. Turler, D.; Griffith, B.T.; Arasteh, D.K. (1997) Laboratory procedures for using infrared thermography to validate heat transfer models, in Insulation Materials: Testing and Applications, 3rd Vol. (eds R.S. Graves and R.R. Zarr), American Society for Testing and Materials, Ann Arbor, MI, USA.

6. Sfarra, S.; Ibarra-Castanedo, C.; Lambiase, F.; Paoletti, D.; Di Ilio, A.; Maldague, X. (2012) From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared. Meas. Sci. Technol. 23, [11], 14.

7. Ishikawa, M.; Hatta, H.; Habuka, Y.; Fukui, R.; Utsunomiya, S. (2013) Detecting deeper defects using pulse phase thermography. Infrared Phys. Techn. 57, 42-9.

8. Zöcke, C.M. (2010) Quantitative analysis of defects in composite material by means of optical lockin thermography, Shaker Verlag GmbH, Germany, 151.

9. Maldague, X.P.V. (2001) Theory and practice of infrared technology for nondestructive testing, Wiley-Interscience, U.S.A., 704.

10. Edis, E.; Flores-Colen, I.; de Brito, J. (2015) Quasiquantitative infrared thermographic detection of moisture variation in facades with adhered ceramic cladding using principal component analysis. Build. Environ. 94, 97-108.

11. Krankenhagen, R.; Maierhofer, C. (2014) Pulse phase thermography for characterising large historical building faÁades after solar heating and shadow cast a case study. QIRT J 11, 10-28.

12. Lerma, J.L.; Cabrelles, M.; PortalÈs, C. (2011) Multitemporal thermal analysis to detect moisture on a building faÁade. Constr. Build. Mater. 25 [5], 2190-97.

13. Sfarra, S.; Bendada, A.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Maldague, X. (2015) Santa Maria di Collemaggio Church (L´Aquila, Italy): historical reconstruction by non-destructive testing techniques. Int. J. Arch. Herit. 9, 367-90.

14. Grinzato, E.; Bison, P.G.; Marinetti, S. (2002) Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 3, 21-9.

15. Avdelidis, N.; Moropoulou, A. (2004) Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 5, 119-27.

16. Gayo, E.; Palomo, A.; Macias, A. (1992) Infrared thermography: possibilities and application to the study of material surfaces. Mater. Construcc. 42 [227], 5-14.

17. Lerma, C.; Mas, A.; Gil, E.; Vercher, J.; PeH alver, M.J. (2014) Pathology of building materials in historic buildings. Relationship between laboratory testing and infrared thermography. Mater. Construcc. 64 [313].

18. Palomo, A.; Gayo, E.; Massa, S. (2000) External radiation as element of improvement infrared thermography measurements. Mater. Construcc. 2000 [259], 45-55.

19. Paoletti, D.; Ambrosini, D.; Sfarra, S.; Bisegna, F. (2013) Preventive thermographic diagnosis of historical buildings for consolidation. J. Cult. Herit.14, 116-21.

20. Di Tuccio, M.C.; Ludwig, N.; Gargano, M.; Bernardi, A. (2015) Thermographic inspection of cracks in the mixed materials statue: Ratto delle Sabine. Herit. Sci. 3 [10], 1-8.

21. Sfarra, S.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Bendada, A.; Maldague, X. (2014) Non-destructive testing techniques to help the restoration of frescoes. Arab. J. Sci. Eng. 39, 3461-80.

22. Winfree, W.P.; Elliott Cramer, K.; Zalameda, J.N.; Howell, P.A.; Burke, E.R. (2015) Principal component analysis of thermographic data. Proc. SPIE 9485, Thermosense: Thermal Infrared Applications XXXVII, 94850G,

23. Shepard, S.M.; Lhota, J.R.; Rubadeux, B.A.; Wang, D.; Ahmed, T. (2003) Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 42 [5], 1337-42.

24. Moretti, M. (1972) Architettura medioevale in Abruzzo (dal VI al XVI secolo), De Luca ed., Italy, 980.

25. Binda, L.; Lualdi, M.; Saisi, A. (2008) Investigation strategies for the diagnostic structures: on-site tests on Avio Castle, Italy, and Pisece Castle, Slovenia. Can. J. Civil. Eng.. 35 [6], 555-66.

26. Binda, L.; Saisi, A.; Tedeschi, C. (2006) Compatibility of materials used for repair of masonry buildings: research and applications, in Fracture and failure of natural building stones (ed S.K. Kourkoulis), Springer Netherlands, The Netherlands. PMCid:PMC1430237

27. Anzani, A.; Binda, L.; Mirabella Resorti, G. (2000) The effect of heavy persistent actions into the behaviour of ancient masonry. Mater. Struct. 33 [228], 251-61.

28. Rodolico, F. (1953) Le pietre della citta d’Italia, 2nd Ed., Felice le Monnier ed., Italy, 392.

29. Gavini, I.C. (1980) Storia dell´architettura in Abruzzo, 1st Vol, Costantini ed., Italy, 409.

30. Brusaporci, S. (2007) Le murature nell´ architettura del versante meridionale del Gran Sasso (secc. XI-XIV), Gangemi ed., Italy, 192.

31. Bartolomucci, C. (2004) Santa Maria di Collemaggio. Interpretazione critica e problemi di conservazione, Palombi ed., Italy, 153.

32. CaÒas Guerrero, I.; Martin OcaÒa, S.; Gonz·lez Requena, I. (2005) Thermal-physical aspects of materials used for the construction of rural buildings in Soria (Spain). Constr. Build. Mater. 19 [3], 197-211.

33. Bisegna, F.; Ambrosini, D.; Paoletti, D.; Sfarra, S.; Gugliermetti, F. (2014) A qualitative method for combining thermal imprints to emerging weak points of ancient wall structures by passive infrared thermography. A case study. J Cult. Herit. 15, 199-202.

34. Ibarra-Castanedo, C.; Piau, J.-M.; Guilbert, S.; Avdelidis, N.; Genest, M., Bendada, A., Maldague, X.P.V. (2009) Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20 [1], 1-31.

35. Arndt, R.W. (2010) Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering. I nfrared Phys. Techn. 53, 246-53.

36. Ibarra-Castanedo, C.; Gonzalez, D.; Klein, M.; Pilla, M.; Vallerand, S., Maldague, X.P. (2004) Infrared image processing and data analysis. Infrared Phys. Techn. 46, 75-83.

37. Snieder, R. and van Vijk, K. (2015) A Guided Tour of Mathematical Methods for the Physical Sciences, Cambridge University Press, U.S.A., 579.

38. Gavrilov, D.; Maev, R.Gr.; Almond, D.P. (2014) A review of imaging methods in analysis of works of art: thermographic imaging method in art analysis. Can J. Phys. 92, 341-64.

39. Duan, Y.; Servais, P.; Genest, M.; Ibarra-Castanedo, C.; Maldague, X.P.V. (2012) ThermoPOD: a reliability study on active infrared thermography for the inspection of composite materials. J. Mech. Sci. Technol. 26 [7], 1985-91.

40. Cimellaro, G.P.; Reinhorn, A.M.; De Stefano, A. (2011) Instrospection on improper seismic retrofit of Basilica Santa Maria di Collemaggio after 2009 Italian earthquake. Earthq. Eng. & Eng. Vib. 10, 153- 61.

41. Ranalli, D.; Scozzafava, M.; Tallini, M. (2004) Ground penetrating radar investigations for the restoration of historic buildings: the case study of the Collemaggio Basilica (L´Aquila, Italy). J. Cult. Herit. 5, 91-9.

42. Antonacci, E.; Beolchini, G.C. (2005) The dynamic behaviour of the faÁade of the Basilica Santa Maria di Collemaggio, in Structural analysis of historical constructions (eds P.B. LourenÁo and P. Roca), Taylor and Francis Group, London. ISBN: 0415363799.

43. Rajic, N. (2002) Principal component thermography for flaw enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58, 521-28.

44. Ibarra-Castanedo, C.; Sfarra, S.; Genest, M.; Maldague, X. (2015) Infrared vision: visual inspection beyond the visible spectrum, in Integrated imaging and vision techniques for industrial inspection advances and applications, (eds Z. Liu, H. Ukida, P. Ramuhalli and K. Niel), Springer-Verlag London, London, UK.

45. Sfarra, S.; Theodorakeas, P.; Ibarra-Castanedo, C.; Avdelidis, N.P.; Ambrosini, D.; Cheilakou, E.; Paoletti, D.; Koui, M.; Bendada, A.; Maldague, X. (2015) How to retrieve information inherent to old restorations made on frescoes of particular artistic value using infrared vision?. Int J. Thermophys. 36, 3051-70.

46. De Araujo, M.; Djulay, V.V. (1996) Effect of mutual bonding of textile layers on thermal insulation and thermal contact properties of fabric assemblies. Text. Res. J. 66 [4], 245-50.

47. Bai, W.; Wong, B.S. (2001) Evaluation of defects in composite plates under convective environments using lockin thermography. Meas. Sci. Technol. 12, 142-50.

48. Ibarra-Castanedo, C.; Sfarra, S.; Ambrosini, D.; Paoletti, D.; Bendada, A.; Maldague, X. (2010) Diagnostics of panel paintings using holographic interferometry and pulsed thermography. QIRT J. 5 [1], 85-114.

49. Robertson, E.C. (1988) Thermal properties of rocks. Open- File Report 88 441. United States Dept. of the Interior Geological Survey.

50. Edis, E.; Flores-Colen, I.; de Brito, J. (2013) Passive thermographic inspection of adhered ceramic claddings: limitation and conditioning factors. J. Perform. Constr. Facil. 27 [6], 737-47.

51. Edis, E.; Flores-Colen, I.; de Brito, J. (2015) Time-dependent passive building thermography for detecting delamination of adhered ceramic cladding. J. Nondestruct. Eval. 34 [24], 1-16.

52. Camino, M.S.; León, F.J.; Llorente, A.; Olivar, J.M. (2014) Evaluation of the behavior of brick tile masonry and mortar due to capillary rise of moisture. Mater. Construcc. 64 [314], 1-10.

53. Barreira, E.; Freitas, V.P. (2007) Evaluation of building materials using infrared thermography. Constr. Build. Mater. 21 [1], 218-28.

54. Avdelidis, N.; Moropoulou, A. (2003) Emissivity considerations in building thermography. Energ. Build. 35 [7], 663-7.

55. Chew, M. (1998) Assessing building facades using infrared thermography. Struct. Surv. 16 [2], 81-6.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support