Exploración infrarroja del patrimonio arquitectónico: de la termografía infrarroja pasiva al enfoque de la termografía infrarroja híbrida (HIRT)

Autores/as

  • S. Sfarra Las.E.R. Laboratory, Dept. of Industrial and Information Engineering and Economics, University of L’Aquila
  • E. Marcucci Las.E.R. Laboratory, Dept. of Industrial and Information Engineering and Economics, University of L’Aquila
  • D. Ambrosini Las.E.R. Laboratory, Dept. of Industrial and Information Engineering and Economics, University of L’Aquila
  • D. Paoletti Las.E.R. Laboratory, Dept. of Industrial and Information Engineering and Economics, University of L’Aquila

DOI:

https://doi.org/10.3989/mc.2016.07415

Palabras clave:

Análisis de imágenes, Propiedades físicas, Temperatura, Análisis térmico, Caliza

Resumen


Hasta la fecha, los enfoques sobre la termografía infrarroja han sido considerados, o pasivos, o activos. En este último caso, el flujo de calor se obtiene a través de una fuente de calor no natural. El uso de energía solar ha sido recientemente incorporado al enfoque activo gracias a los estudios multitemporales. En este trabajo, se ilustra un enfoque innovador de la termografía híbrida (HIRT). Se combina tanto el componente de tiempo y la fuente de energía solar para recuperar la información cuantitativa así como la profundidad del defecto. Las imágenes térmicas se obtuvieron mediante el análisis de la fachada de la Iglesia de Santa María Collemaggio (L’Aquila, Italia), mientras que los resultados cuantitativos inherentes a las discontinuidades sub-superficiales se obtuvieron gracias al uso de otras técnicas avanzadas. Los resultados experimentales vinculados al enfoque pasivo (es decir, el proceso de mosaico de las imágenes térmicas) derivan de un conjunto de Iglesias antiguas, también incluidas en el estudio, a fin de explicar cuándo y dónde tiene sentido realizar un proceso híbrido.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Albatici, R.; Tonelli, A.; Chiogna, M. (2015) A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance. Appl. Energ. 141, 218- 228. http://dx.doi.org/10.1016/j.apenergy.2014.12.035

2. Ohlsson, K.E.A.; Olofsson, T. (2014) Quantitative infrared thermography imaging of the density of heat flow rate through a building element surface. Appl. Energ. 134, 499-505. http://dx.doi.org/10.1016/j.apenergy.2014.08.058

3. Grinzato, E.; Vavilov, V.; Kauppinen, T. (1998) Quantitative infrared thermography in buildings. Energ. Buildings 29, 1-9. http://dx.doi.org/10.1016/S0378-7788(97)00039-X

4. Goldstein, R. J. (1988) Quantitative Thermography: Estimate of Building Envelope Heat Loss, in Theory and Practice of Radiation Thermometry (eds D.P. DeWitt and G.D. Nutter), John Wiley & Sons, Inc., Hoboken, NJ, USA. http://dx.doi.org/10.1002/9780470172575.ch21

5. Turler, D.; Griffith, B.T.; Arasteh, D.K. (1997) Laboratory procedures for using infrared thermography to validate heat transfer models, in Insulation Materials: Testing and Applications, 3rd Vol. (eds R.S. Graves and R.R. Zarr), American Society for Testing and Materials, Ann Arbor, MI, USA. http://dx.doi.org/10.1520/STP12265S

6. Sfarra, S.; Ibarra-Castanedo, C.; Lambiase, F.; Paoletti, D.; Di Ilio, A.; Maldague, X. (2012) From the experimental simulation to integrated non-destructive analysis by means of optical and infrared techniques: results compared. Meas. Sci. Technol. 23, [11], 14. http://dx.doi.org/10.1088/0957-0233/23/11/115601

7. Ishikawa, M.; Hatta, H.; Habuka, Y.; Fukui, R.; Utsunomiya, S. (2013) Detecting deeper defects using pulse phase thermography. Infrared Phys. Techn. 57, 42-9. http://dx.doi.org/10.1016/j.infrared.2012.11.009

8. Zöcke, C.M. (2010) Quantitative analysis of defects in composite material by means of optical lockin thermography, Shaker Verlag GmbH, Germany, 151.

9. Maldague, X.P.V. (2001) Theory and practice of infrared technology for nondestructive testing, Wiley-Interscience, U.S.A., 704.

10. Edis, E.; Flores-Colen, I.; de Brito, J. (2015) Quasiquantitative infrared thermographic detection of moisture variation in facades with adhered ceramic cladding using principal component analysis. Build. Environ. 94, 97-108. http://dx.doi.org/10.1016/j.buildenv.2015.07.027

11. Krankenhagen, R.; Maierhofer, C. (2014) Pulse phase thermography for characterising large historical building faÁades after solar heating and shadow cast a case study. QIRT J 11, 10-28. http://dx.doi.org/10.1080/17686733.2013.865910

12. Lerma, J.L.; Cabrelles, M.; PortalÈs, C. (2011) Multitemporal thermal analysis to detect moisture on a building faÁade. Constr. Build. Mater. 25 [5], 2190-97. http://dx.doi.org/10.1016/j.conbuildmat.2010.10.007

13. Sfarra, S.; Bendada, A.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Maldague, X. (2015) Santa Maria di Collemaggio Church (L´Aquila, Italy): historical reconstruction by non-destructive testing techniques. Int. J. Arch. Herit. 9, 367-90. http://dx.doi.org/10.1080/15583058.2013.794376

14. Grinzato, E.; Bison, P.G.; Marinetti, S. (2002) Monitoring of ancient buildings by the thermal method. J. Cult. Herit. 3, 21-9. http://dx.doi.org/10.1016/S1296-2074(02)01159-7

15. Avdelidis, N.; Moropoulou, A. (2004) Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 5, 119-27. http://dx.doi.org/10.1016/j.culher.2003.07.002

16. Gayo, E.; Palomo, A.; Macias, A. (1992) Infrared thermography: possibilities and application to the study of material surfaces. Mater. Construcc. 42 [227], 5-14. http://dx.doi.org/10.3989/mc.1992.v42.i227.702

17. Lerma, C.; Mas, A.; Gil, E.; Vercher, J.; PeH alver, M.J. (2014) Pathology of building materials in historic buildings. Relationship between laboratory testing and infrared thermography. Mater. Construcc. 64 [313].

18. Palomo, A.; Gayo, E.; Massa, S. (2000) External radiation as element of improvement infrared thermography measurements. Mater. Construcc. 2000 [259], 45-55.

19. Paoletti, D.; Ambrosini, D.; Sfarra, S.; Bisegna, F. (2013) Preventive thermographic diagnosis of historical buildings for consolidation. J. Cult. Herit.14, 116-21. http://dx.doi.org/10.1016/j.culher.2012.05.005

20. Di Tuccio, M.C.; Ludwig, N.; Gargano, M.; Bernardi, A. (2015) Thermographic inspection of cracks in the mixed materials statue: Ratto delle Sabine. Herit. Sci. 3 [10], 1-8. http://dx.doi.org/10.1186/s40494-015-0041-6

21. Sfarra, S.; Ibarra-Castanedo, C.; Ambrosini, D.; Paoletti, D.; Bendada, A.; Maldague, X. (2014) Non-destructive testing techniques to help the restoration of frescoes. Arab. J. Sci. Eng. 39, 3461-80. http://dx.doi.org/10.1007/s13369-014-0992-z

22. Winfree, W.P.; Elliott Cramer, K.; Zalameda, J.N.; Howell, P.A.; Burke, E.R. (2015) Principal component analysis of thermographic data. Proc. SPIE 9485, Thermosense: Thermal Infrared Applications XXXVII, 94850G,

23. Shepard, S.M.; Lhota, J.R.; Rubadeux, B.A.; Wang, D.; Ahmed, T. (2003) Reconstruction and enhancement of active thermographic image sequences. Opt. Eng. 42 [5], 1337-42. http://dx.doi.org/10.1117/1.1566969

24. Moretti, M. (1972) Architettura medioevale in Abruzzo (dal VI al XVI secolo), De Luca ed., Italy, 980.

25. Binda, L.; Lualdi, M.; Saisi, A. (2008) Investigation strategies for the diagnostic structures: on-site tests on Avio Castle, Italy, and Pisece Castle, Slovenia. Can. J. Civil. Eng.. 35 [6], 555-66. http://dx.doi.org/10.1139/L07-143

26. Binda, L.; Saisi, A.; Tedeschi, C. (2006) Compatibility of materials used for repair of masonry buildings: research and applications, in Fracture and failure of natural building stones (ed S.K. Kourkoulis), Springer Netherlands, The Netherlands. PMCid:PMC1430237

27. Anzani, A.; Binda, L.; Mirabella Resorti, G. (2000) The effect of heavy persistent actions into the behaviour of ancient masonry. Mater. Struct. 33 [228], 251-61. http://dx.doi.org/10.1007/BF02479335

28. Rodolico, F. (1953) Le pietre della citta d’Italia, 2nd Ed., Felice le Monnier ed., Italy, 392.

29. Gavini, I.C. (1980) Storia dell´architettura in Abruzzo, 1st Vol, Costantini ed., Italy, 409.

30. Brusaporci, S. (2007) Le murature nell´ architettura del versante meridionale del Gran Sasso (secc. XI-XIV), Gangemi ed., Italy, 192.

31. Bartolomucci, C. (2004) Santa Maria di Collemaggio. Interpretazione critica e problemi di conservazione, Palombi ed., Italy, 153.

32. CaÒas Guerrero, I.; Martin OcaÒa, S.; Gonz·lez Requena, I. (2005) Thermal-physical aspects of materials used for the construction of rural buildings in Soria (Spain). Constr. Build. Mater. 19 [3], 197-211. http://dx.doi.org/10.1016/j.conbuildmat.2004.05.016

33. Bisegna, F.; Ambrosini, D.; Paoletti, D.; Sfarra, S.; Gugliermetti, F. (2014) A qualitative method for combining thermal imprints to emerging weak points of ancient wall structures by passive infrared thermography. A case study. J Cult. Herit. 15, 199-202. http://dx.doi.org/10.1016/j.culher.2013.03.006

34. Ibarra-Castanedo, C.; Piau, J.-M.; Guilbert, S.; Avdelidis, N.; Genest, M., Bendada, A., Maldague, X.P.V. (2009) Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20 [1], 1-31. http://dx.doi.org/10.1080/09349840802366617

35. Arndt, R.W. (2010) Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering. I nfrared Phys. Techn. 53, 246-53.

36. Ibarra-Castanedo, C.; Gonzalez, D.; Klein, M.; Pilla, M.; Vallerand, S., Maldague, X.P. (2004) Infrared image processing and data analysis. Infrared Phys. Techn. 46, 75-83. http://dx.doi.org/10.1016/j.infrared.2004.03.011

37. Snieder, R. and van Vijk, K. (2015) A Guided Tour of Mathematical Methods for the Physical Sciences, Cambridge University Press, U.S.A., 579. http://dx.doi.org/10.1017/CBO9781139013543

38. Gavrilov, D.; Maev, R.Gr.; Almond, D.P. (2014) A review of imaging methods in analysis of works of art: thermographic imaging method in art analysis. Can J. Phys. 92, 341-64. http://dx.doi.org/10.1139/cjp-2013-0128

39. Duan, Y.; Servais, P.; Genest, M.; Ibarra-Castanedo, C.; Maldague, X.P.V. (2012) ThermoPOD: a reliability study on active infrared thermography for the inspection of composite materials. J. Mech. Sci. Technol. 26 [7], 1985-91. http://dx.doi.org/10.1007/s12206-012-0510-8

40. Cimellaro, G.P.; Reinhorn, A.M.; De Stefano, A. (2011) Instrospection on improper seismic retrofit of Basilica Santa Maria di Collemaggio after 2009 Italian earthquake. Earthq. Eng. & Eng. Vib. 10, 153- 61. http://dx.doi.org/10.1007/s11803-011-0054-4

41. Ranalli, D.; Scozzafava, M.; Tallini, M. (2004) Ground penetrating radar investigations for the restoration of historic buildings: the case study of the Collemaggio Basilica (L´Aquila, Italy). J. Cult. Herit. 5, 91-9. http://dx.doi.org/10.1016/j.culher.2003.05.001

42. Antonacci, E.; Beolchini, G.C. (2005) The dynamic behaviour of the faÁade of the Basilica Santa Maria di Collemaggio, in Structural analysis of historical constructions (eds P.B. LourenÁo and P. Roca), Taylor and Francis Group, London. ISBN: 0415363799.

43. Rajic, N. (2002) Principal component thermography for flaw enhancement and flaw depth characterisation in composite structures. Compos. Struct. 58, 521-28. http://dx.doi.org/10.1016/S0263-8223(02)00161-7

44. Ibarra-Castanedo, C.; Sfarra, S.; Genest, M.; Maldague, X. (2015) Infrared vision: visual inspection beyond the visible spectrum, in Integrated imaging and vision techniques for industrial inspection advances and applications, (eds Z. Liu, H. Ukida, P. Ramuhalli and K. Niel), Springer-Verlag London, London, UK. http://dx.doi.org/10.1007/978-1-4471-6741-9_2

45. Sfarra, S.; Theodorakeas, P.; Ibarra-Castanedo, C.; Avdelidis, N.P.; Ambrosini, D.; Cheilakou, E.; Paoletti, D.; Koui, M.; Bendada, A.; Maldague, X. (2015) How to retrieve information inherent to old restorations made on frescoes of particular artistic value using infrared vision?. Int J. Thermophys. 36, 3051-70. http://dx.doi.org/10.1007/s10765-015-1962-8

46. De Araujo, M.; Djulay, V.V. (1996) Effect of mutual bonding of textile layers on thermal insulation and thermal contact properties of fabric assemblies. Text. Res. J. 66 [4], 245-50. http://dx.doi.org/10.1177/004051759606600410

47. Bai, W.; Wong, B.S. (2001) Evaluation of defects in composite plates under convective environments using lockin thermography. Meas. Sci. Technol. 12, 142-50. http://dx.doi.org/10.1088/0957-0233/12/2/303

48. Ibarra-Castanedo, C.; Sfarra, S.; Ambrosini, D.; Paoletti, D.; Bendada, A.; Maldague, X. (2010) Diagnostics of panel paintings using holographic interferometry and pulsed thermography. QIRT J. 5 [1], 85-114. http://dx.doi.org/10.3166/qirt.7.85-114

49. Robertson, E.C. (1988) Thermal properties of rocks. Open- File Report 88 441. United States Dept. of the Interior Geological Survey.

50. Edis, E.; Flores-Colen, I.; de Brito, J. (2013) Passive thermographic inspection of adhered ceramic claddings: limitation and conditioning factors. J. Perform. Constr. Facil. 27 [6], 737-47. http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0000365

51. Edis, E.; Flores-Colen, I.; de Brito, J. (2015) Time-dependent passive building thermography for detecting delamination of adhered ceramic cladding. J. Nondestruct. Eval. 34 [24], 1-16. http://dx.doi.org/10.1007/s10921-015-0297-5

52. Camino, M.S.; León, F.J.; Llorente, A.; Olivar, J.M. (2014) Evaluation of the behavior of brick tile masonry and mortar due to capillary rise of moisture. Mater. Construcc. 64 [314], 1-10. http://dx.doi.org/10.3989/mc.2014.02513

53. Barreira, E.; Freitas, V.P. (2007) Evaluation of building materials using infrared thermography. Constr. Build. Mater. 21 [1], 218-28. http://dx.doi.org/10.1016/j.conbuildmat.2005.06.049

54. Avdelidis, N.; Moropoulou, A. (2003) Emissivity considerations in building thermography. Energ. Build. 35 [7], 663-7. http://dx.doi.org/10.1016/S0378-7788(02)00210-4

55. Chew, M. (1998) Assessing building facades using infrared thermography. Struct. Surv. 16 [2], 81-6. http://dx.doi.org/10.1108/02630809810219669

Publicado

2016-09-30

Cómo citar

Sfarra, S., Marcucci, E., Ambrosini, D., & Paoletti, D. (2016). Exploración infrarroja del patrimonio arquitectónico: de la termografía infrarroja pasiva al enfoque de la termografía infrarroja híbrida (HIRT). Materiales De Construcción, 66(323), e094. https://doi.org/10.3989/mc.2016.07415

Número

Sección

Artículos