Materiales de Construcción, Vol 67, No 326 (2017)

Impact of the use of alternative fuels on clinker reactivity


https://doi.org/10.3989/mc.2017.08215

K. Serrano-González
Division of Engineering and Technology, Universidad de Monterrey, Mexico
orcid http://orcid.org/0000-0002-8668-2158

A. Reyes-Valdez
Division of Engineering and Technology, Universidad de Monterrey, Mexico
orcid http://orcid.org/0000-0003-2952-0870

O. Chowaniec
Division of Engineering and Technology, Universidad de Monterrey, Mexico
orcid http://orcid.org/0000-0001-7658-6552

Abstract


The use of alternative fuels in the cement industry has increased its relevance in the past decades due to their ecological and economic benefits. In concert with the efforts to increase its use, several studies have focused on their potential impact with respect to clinker reactivity and how they could affect the expected physical and mechanical properties. This work studied the effects of five alternative fuels on the reactivity of eight industrial clinker samples, considering several analytical techniques. Differences were identified among the clinker samples after replacing the alternative fuels, mainly with simultaneous eliminations, as in samples S4, S5 and S8. The modifications were related to the polymorph, size and reactivity of tricalcium silicate and to the clinker profile during the hydration process, due to the SO3 consumption rate. These changes were expressed in the higher compressive strengths in comparison with the original reference clinker.

Keywords


Portland cement; Clinker; Alternative fuels; Hydration; Emissions

Full Text:


HTML PDF XML

References


Edenhofer, O. IPCC. (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. http://www.globalchange.umd.edu/iamc_data/iamc2014/Edenhofer_IAMC_17November.pdf

Cembureau. (1999) Environmental Benefits of Using Alternative Fuels in Cement Production: A Life-Cycle Approach. The European Cement Association.

G.H. Brundtland. (1987) Report of the World Commission on Environment and Development. United Nations General Assembly Oslo.

Trezza, M.; Scian, A. (2009) Estructura y Propiedades de Clinkers de Cemento Portland obtenidos con Combustibles Residuales. Revista de la Construcción, 8, 4–12.

Aldieb, M.; Ibrahim, H.G. (2010) Variation of Feed Chemical Composition and its effect on Clinker Formation Simulation Process. Proceeding of the World Congress on Engineering and Computer Science, San Francisco, 2.

Alemayehu, F.; Sahu, O. (2013) Minimization of variation in clinker quality. Adv. Materials, 2, 23–28. https://doi.org/10.11648/j.am.20130202.12

Tuthill, L.H.; Adams, R.F.; Bailey, S.N.; Smith, R.W. (1961) A Case of Abnormally Slow Hardening Concrete for Tunnel Lining. ACI Journal, Proceedings 57 [3], 1091-1109.

Khalil, S.M.; Ward, M.A. (1978) Influence of SO3 and C3A on the Early Reaction Rates of Portland Cement in the Presence of Calcium Lignosulfonate, American Ceramic Society Bulletin, 57 [ 12], 1116–1122.

NMX-C-059-ONNCCE, Norma Mexicana. (2014) Determinación del tiempo de fraguado de cementantes hidráulicos, Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, México.

NMX-C-061-ONNCCE, Norma Mexicana. (2014) Determinación de la resistencia a la compresión de cementantes hidráulicos, Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, México.

NMX-C-144-ONNCCE, Norma Mexicana. (2010) Determinación de la fluidez de morteros, Organismo Nacional de Normalización y Certificación de la Construcción y la Edificación, México.

Lerch, W. (1946) The influence of gypsum on the hydration and properties of Portland cement pastes. American Society of Testing Materials Procc., 46, 1252–1297.

Tsamatsoulis, D.; Nikolakakos, N. (2012) Investigation of Some Basic Parameters Affecting the Optimum Sulfates Content of Cement. Halyps Building Materials S.A., Italcementi Group 17 th Klm Nat. Rd. Athens – Korinth GREECE. ISBN: 978-1-61804-108-1.

Katsioti, M.; Tsakiridis, P.E.; Giannatos, P.; Tsibouki, Z.; Marinos, J. (2009) Characterization of various cement grinding aids and their impact on grindability and cement performance. Construc. Build. Mat., 23, 1954–1959. https://doi.org/10.1016/j.conbuildmat.2008.09.003

Ramachandran, V.S.; Lowery, M.S. (1992) Conduction Calorimetric Investigation of the Effect of Retarders on the Hydration of Portland Cement. Thermochim. Acta, 195, 373–387. https://doi.org/10.1016/0040-6031(92)80081-7




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es