Materiales de Construcción, Vol 69, No 334 (2019)

Predicting the Mechanical Properties of Concrete Using Intelligent Techniques to Reduce CO2 Emissions


https://doi.org/10.3989/mc.2019.07018

H. H. Ghayeb
Department of Civil Engineering, Faculty of Engineering, University of Malaya, Malaysia
orcid http://orcid.org/0000-0001-8434-1993

H. A. Razak
Department of Civil Engineering, Faculty of Engineering, University of Malaya, Malaysia
orcid http://orcid.org/0000-0002-5458-6188

N.H. R. Sulong
Department of Civil Engineering, Faculty of Engineering, University of Malaya, Spain
orcid http://orcid.org/0000-0001-8209-313X

A. N. Hanoon
The Engineering Affairs Department, University of Baghdad, Iraq
orcid http://orcid.org/0000-0002-1369-9856

F. Abutaha
Faculty of Civil Engineering, Istanbul Technical University, Turkey
orcid http://orcid.org/0000-0001-8748-6207

H. A. Ibrahim
Department of Civil Engineering, Faculty of Engineering, University of Malaya, Malaysia
orcid http://orcid.org/0000-0002-0646-1612

M. Gordan
Department of Civil Engineering, Faculty of Engineering, University of Malaya, Malaysia
orcid http://orcid.org/0000-0003-0173-8464

M. F. Alnahhal
Department of Civil Engineering, Faculty of Engineering, University of Malaya, Malaysia
orcid http://orcid.org/0000-0002-4921-1728

Abstract


The contribution to global CO2 emissions from concrete production is increasing. In this paper, the effect of concrete mix constituents on the properties of concrete and CO2 emissions was investigated. The tested materials used 47 mixtures, consisting of ordinary Portland cement (OPC) type I, coarse aggregate, river sand and chemical admixtures. Response surface methodology (RSM) and particle swarm optimisation (PSO) algorithms were employed to evaluate the mix constituents at different levels simultaneously. Quadratic and line models were produced to fit the experimental results. Based on these models, the concrete mixture necessary to achieve optimum engineering properties was found using RSM and PSO. The resulting mixture required to obtain the desired mechanical properties for concrete was 1.10-2.00 fine aggregate/cement, 1.90-2.90 coarse aggregate/cement, 0.30-0.4 water/cement, and 0.01-0.013 chemical admixtures/cement. Both methods had over 94% accuracy, compared to the experimental results. Finally, by employing RSM and PSO methods, the number of experimental mixtures tested could be reduced, saving time and money, as well as decreasing CO2 emissions.

Keywords


CO2 emission; Mechanical properties of concrete; Optimum mix design; Particle swarm optimisation; Response surface method

Full Text:


HTML PDF XML

References


Khokhar, M.; Rozière, E.; Turcry, P.; Grondin, F.; Loukili, A. (2010) Mix design of concrete with high content of mineral additions: Optimisation to improve early age strength. Cem. Concr. Com. 32 (5):377-385. https://doi.org/10.1016/j.cemconcomp.2010.01.006

Koo, B.; Kim, J.; Kim, S.; Mun, S. (2014) Material and structural performance evaluations of Hwangtoh admixtures and recycled PET fiber-added eco-friendly concrete for CO2 emission reduction. Materials 7 (8):5959-5981. https://doi.org/10.3390/ma7085959 PMid:28788171 PMCid:PMC5456196

Ortega, J.; Sánchez, I.; Cabeza, M.; Climent, M. (2017) Short-term behavior of slag concretes exposed to a real in situ mediterranean climate environment. Materials 10 (8):915. https://doi.org/10.3390/ma10080915 PMid:28786936 PMCid:PMC5578281

Turner, L.; Collins, F. (2013) Carbon dioxide equivalent (CO 2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build Mater 43:125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

Flower, D.J.; Sanjayan, J.G. (2007) Green house gas emissions due to concrete manufacture. The international Journal of life cycle assessment 12 (5):282. https://doi.org/10.1065/lca2007.05.327

Gartner, E. (2004) Industrially interesting approaches to "low-CO2" cements. Cem. Concr. Res. 34 (9):1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021

Josa, A.; Aguado, A.; Heino, A.; Byars, E.; Cardim, A. (2004) Comparative analysis of available life cycle inventories of cement in the EU. Cem. Concr. Res. 34 (8):1313- 1320. https://doi.org/10.1016/j.cemconres.2003.12.020

Khodaii, A.; Haghshenas, H.; Tehrani, H.K.; Khedmati, M. (2013) Application of response surface methodology to evaluate stone matrix asphalt stripping potential. KSCE J. Civil Engineering 17 (1):117. https://doi.org/10.1007/s12205-013-1698-6

Kavussi, A.; Qorbani, M.; Khodaii, A.; Haghshenas, H. (2014) Moisture susceptibility of warm mix asphalt: a statistical analysis of the laboratory testing results. Constr. Build Mater 52:511-517. https://doi.org/10.1016/j.conbuildmat.2013.10.073

Khodaii, A.; Haghshenas, H.; Tehrani, H.K. (2012) Effect of grading and lime content on HMA stripping using statistical methodology. Constr. Build Mater 34:131-135. https://doi.org/10.1016/j.conbuildmat.2012.02.025

Yang, K.H.; Jung, Y.B.; Cho, M.S.; Tae, S.H. (2015) Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Cleaner Prod. 103: 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018

Moghaddam, T.B.; Soltani, M.; Karim, M.R. (2015) Stiffness modulus of Polyethylene Terephthalate modified asphalt mixture: A statistical analysis of the laboratory testing results. Materials & Design 68:88-96. https://doi.org/10.1016/j.matdes.2014.11.044

Chinneck, J.W. (2006) Practical optimization: a gentle introduction. Systems and Computer Engineering, Carleton University, Ottawa http://www.sce.carleton.ca/ faculty/chinneck/po.html.

Van Stralen, K.J.; Jager, K.J.; Zoccali, C.; Dekker, F.W. (2008) Agreement between methods. Kidney international 74 (9):1116-1120. https://doi.org/10.1038/ki.2008.306 PMid:18596728

Gordan, M.; Razak, H.A.; Ismail, Z.; Ghaedi, K. (2017) Recent developments in damage identification of structures using data mining. Latin American Journal of Solids and Structures 13. https://doi.org/10.1590/1679-78254378

Islam, M.; Mansur, M.; Maalej, M. (2005) Shear strengthening of RC deep beams using externally bonded FRP systems. Cem. Concr. Com 27 (3):413-420. https://doi.org/10.1016/j.cemconcomp.2004.04.002

Zhang, Z.; Hsu, C. (2005) Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates. J. Comp. Construc. 9 (2):158-169. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158)

Benachour, A.; Benyoucef, S.; Tounsi, A. (2008) Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate. Engineering Structures 30 (11): 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007

Jalali, M.; Sharbatdar, M.K.; Chen, J.F.; Alaee, F.J. (2012) Shear strengthening of RC beams using innovative manually made NSM FRP bars. Constr. Build Mater 36: 990-1000. https://doi.org/10.1016/j.conbuildmat.2012.06.068

Hanoon, A.N.; Jaafar, M.; Hejazi, F.; Abdul Aziz, F.N. (2017) Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique. Engineering Optimization 49 (9):1483-1501. https://doi.org/10.1080/0305215X.2016.1256729

Marceau, M.; Nisbet, M.A.; Van Geem, M.G. (2006) Life cycle inventory of portland cement manufacture. Portland Cement Association, Illinois.

Consultancy, A. (2010) 2010 Guidelines to Defra/DECC's GHG Conversion Factors for Company Reporting; produced by AEA for the Department of Energy and Climate Change (DECC) and the Department for Environment, Food and Rural Affairs (Defra), Version 1.2. 1; download at http://archive.defra.gov.uk/environment/ business/reporting/conversion-factors.htm; also available in Excel file format; last accessed June 2012.

ASTM-C192 (2003) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory Annual Book of ASTM Standards 4.02. ASTM International, West Conshohocken, PA.

Khuri, A.I.; John, A. (1996) Cornell, Response Surfaces, Designs and Analyses, Revised and Expanded [edition], Chapter 2, Matrix Algebra, Least Squares, the Analysis of Variance, and Principles of Experimental Design. Marcel Dekker, Inc., New York.

Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Borror, C.M.; Kowalski, S.M. (2004) Response surface methodology: a retrospective and literature survey. J. quality technology 36 (1):53. https://doi.org/10.1080/00224065.2004.11980252

Azargohar, R.; Dalai, A. (2005) Production of activated carbon from Luscar char: experimental and modeling studies. Microporous and mesoporous materials 85 (3):219-225. https://doi.org/10.1016/j.micromeso.2005.06.018

Pouran, S.R. Aziz, A.A.; Daud, W.; Shamshirband, S. (2015) Estimation of the effect of catalyst physical characteristics on Fenton-like oxidation efficiency using adaptive neuro-fuzzy computing technique. Measurement 59:314-328. https://doi.org/10.1016/j.measurement.2014.09.060

Moghaddam, T.B.; Soltani, M.; Karim, M.R.; Baaj, H. (2015) Optimization of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology. Measurement 74:159-169. https://doi.org/10.1016/j.measurement.2015.07.012

Soltani, M.; Moghaddam, T.B.; Karim, M.R.; Baaj, H. (2015) Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology.Engineering Failure Analysis 58:238-248. https://doi.org/10.1016/j.engfailanal.2015.09.005

Pourtahmasb, M.S.; Karim, M.R.; Shamshirband, S. (2015) Resilient modulus prediction of asphalt mixtures containing recycled concrete aggregate using an adaptive neuro-fuzzy methodology. Constr. Build Mater 82:257-263. https://doi.org/10.1016/j.conbuildmat.2015.02.030

Can, M.Y.; Kaya, Y.; Algur, O.F. (2006) Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris. Bioresource technology 97 (14):1761-1765. https://doi.org/10.1016/j.biortech.2005.07.017 PMid:16162409

Aksu, Z.; Gönen, F. (2006) Binary biosorption of phenol and chromium (VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves. Separation and Purification Technology 49 (3):205-216. https://doi.org/10.1016/j.seppur.2005.09.014

.

Körbahti, B.K.; Rauf, M.A. (2009) Determination of optimum operating conditions of carmine decoloration by UV/H 2 O 2 using response surface methodology. J. hazardous materials 161 (1):281-286. https://doi.org/10.1016/j.jhazmat.2008.03.118 PMid:18462881

Kulkarni, R.V.; Venayagamoorthy, G.K. (2011) Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41 (2):262-267. https://doi.org/10.1109/TSMCC.2010.2054080

Eberhart, R.; Kennedy, J. (1995) A new optimizer using particle swarm theory. In: Micro Machine and Human Science. MHS'95., Proceedings of the Sixth International Symposium on, 1995. IEEE, pp 39-43. https://doi.org/10.1109/MHS.1995.494215

Hanoon, A.N.; Jaafar, M.; Hejazi, F.; Aziz, F.N. (2017) Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture. Constr. Build Mater 147:428-447. https://doi.org/10.1016/j.conbuildmat.2017.04.094

EN, B. (2000) 12390-1 Testing hardened concrete-Part 1: Shape, dimensions and other requirements for specimens and moulds. European Committee for Standardization.

EN, B. (2009) 12390-3 (2009) Testing hardened concrete- part 3: compressive strength of test specimens. British Standards Institution.

EN, B. (2009) 12390-5. Testing hardened concrete-Part 5: flexural strength of test specimens. British Standards Institution-BSI and CEN European Committee for Standardization.

EN, B. (2009) 12390-6 2009 Testing hardened concrete, Part 6: tensile splitting strength of test specimens. British Standards Institution.

Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. (2001) Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment 26 (1):303-329. https://doi.org/10.1146/annurev.energy.26.1.303

Gustavsson, L.; Sathre, R. (2006) Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment 41 (7):940-951. https://doi.org/10.1016/j.buildenv.2005.04.008

Worrell, E.; Van Heijningen, R.; De Castro, J.; Hazewinkel, J.; De Beer, J.; Faaij, A.; Vringer, K. (1994) New gross energy-requirement figures for materials production. Energy 19 (6):627-640. https://doi.org/10.1016/0360-5442(94)90003-5

Hong, J.; Shen, G.Q.; Feng, Y.; Lau, W.S.; Mao, C. (2015) Greenhouse gas emissions during the construction phase of a building: a case study in China. J. Cleaner Production 103:249-259. https://doi.org/10.1016/j.jclepro.2014.11.023

DECC (2011) 2011 guidelines to DEFRA/DECC's GHG conversion factors for company reporting: Methodology paper for emission factors.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es