Predicción de las propiedades mecánicas de un hormigón utilizando técnicas inteligentes para reducir las emisiones de CO2

Autores/as

DOI:

https://doi.org/10.3989/mc.2019.07018

Palabras clave:

Emisión de CO2, Propiedades mecánicas del hormigón, Diseño óptimo de la mezcla, Optimización por nube de partículas, Método de respuesta de superficie

Resumen


La contribución a las emisiones globales de CO2 debidas a la producción de hormigón está aumentando. En este trabajo, se investigó el efecto de los componentes de la mezcla de hormigón en las propiedades del mismo y las emisiones de CO2. Los materiales estudiados fueron 47 mezclas, que consistieron en cemento Portland ordinario (OPC) tipo I, árido grueso, arena de río y aditivos químicos. Se utilizaron algoritmos de metodología de respuesta de superficie (RSM) y optimización de nube de partículas (PSO) para evaluar los componentes de la mezcla a diferentes niveles simultáneamente. Se elaboraron modelos cuadráticos y lineales para ajustar los resultados experimentales. Basándose en estos modelos, utilizando RSM y PSO, la mezcla de hormigón logró propiedades óptimas de ingeniería. La mezcla resultante requerida para obtener las propiedades mecánicas deseadas para el hormigón fue de 1.10-2.00 árido fino / cemento, 1.90-2.90 árido grueso / cemento, 0.30-0.4 agua / cemento y 0.01-0.013 aditivos químicos / cemento. Ambos métodos tuvieron más del 94% de precisión, en comparación con los resultados experimentales. Finalmente, al emplear los métodos RSM y PSO, el número de mezclas experimentales probadas podría reducirse, ahorrando tiempo y dinero, así como disminuyendo las emisiones de CO2.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Khokhar, M.; Rozière, E.; Turcry, P.; Grondin, F.; Loukili, A. (2010) Mix design of concrete with high content of mineral additions: Optimisation to improve early age strength. Cem. Concr. Com. 32 (5):377-385. https://doi.org/10.1016/j.cemconcomp.2010.01.006

Koo, B.; Kim, J.; Kim, S.; Mun, S. (2014) Material and structural performance evaluations of Hwangtoh admixtures and recycled PET fiber-added eco-friendly concrete for CO2 emission reduction. Materials 7 (8):5959-5981. https://doi.org/10.3390/ma7085959 PMid:28788171 PMCid:PMC5456196

Ortega, J.; Sánchez, I.; Cabeza, M.; Climent, M. (2017) Short-term behavior of slag concretes exposed to a real in situ mediterranean climate environment. Materials 10 (8):915. https://doi.org/10.3390/ma10080915 PMid:28786936 PMCid:PMC5578281

Turner, L.; Collins, F. (2013) Carbon dioxide equivalent (CO 2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build Mater 43:125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023

Flower, D.J.; Sanjayan, J.G. (2007) Green house gas emissions due to concrete manufacture. The international Journal of life cycle assessment 12 (5):282. https://doi.org/10.1065/lca2007.05.327

Gartner, E. (2004) Industrially interesting approaches to "low-CO2" cements. Cem. Concr. Res. 34 (9):1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021

Josa, A.; Aguado, A.; Heino, A.; Byars, E.; Cardim, A. (2004) Comparative analysis of available life cycle inventories of cement in the EU. Cem. Concr. Res. 34 (8):1313- 1320. https://doi.org/10.1016/j.cemconres.2003.12.020

Khodaii, A.; Haghshenas, H.; Tehrani, H.K.; Khedmati, M. (2013) Application of response surface methodology to evaluate stone matrix asphalt stripping potential. KSCE J. Civil Engineering 17 (1):117. https://doi.org/10.1007/s12205-013-1698-6

Kavussi, A.; Qorbani, M.; Khodaii, A.; Haghshenas, H. (2014) Moisture susceptibility of warm mix asphalt: a statistical analysis of the laboratory testing results. Constr. Build Mater 52:511-517. https://doi.org/10.1016/j.conbuildmat.2013.10.073

Khodaii, A.; Haghshenas, H.; Tehrani, H.K. (2012) Effect of grading and lime content on HMA stripping using statistical methodology. Constr. Build Mater 34:131-135. https://doi.org/10.1016/j.conbuildmat.2012.02.025

Yang, K.H.; Jung, Y.B.; Cho, M.S.; Tae, S.H. (2015) Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Cleaner Prod. 103: 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018

Moghaddam, T.B.; Soltani, M.; Karim, M.R. (2015) Stiffness modulus of Polyethylene Terephthalate modified asphalt mixture: A statistical analysis of the laboratory testing results. Materials & Design 68:88-96. https://doi.org/10.1016/j.matdes.2014.11.044

Chinneck, J.W. (2006) Practical optimization: a gentle introduction. Systems and Computer Engineering, Carleton University, Ottawa http://www.sce.carleton.ca/ faculty/chinneck/po.html.

Van Stralen, K.J.; Jager, K.J.; Zoccali, C.; Dekker, F.W. (2008) Agreement between methods. Kidney international 74 (9):1116-1120. https://doi.org/10.1038/ki.2008.306 PMid:18596728

Gordan, M.; Razak, H.A.; Ismail, Z.; Ghaedi, K. (2017) Recent developments in damage identification of structures using data mining. Latin American Journal of Solids and Structures 13. https://doi.org/10.1590/1679-78254378

Islam, M.; Mansur, M.; Maalej, M. (2005) Shear strengthening of RC deep beams using externally bonded FRP systems. Cem. Concr. Com 27 (3):413-420. https://doi.org/10.1016/j.cemconcomp.2004.04.002

Zhang, Z.; Hsu, C. (2005) Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates. J. Comp. Construc. 9 (2):158-169. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158)

Benachour, A.; Benyoucef, S.; Tounsi, A. (2008) Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate. Engineering Structures 30 (11): 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007

Jalali, M.; Sharbatdar, M.K.; Chen, J.F.; Alaee, F.J. (2012) Shear strengthening of RC beams using innovative manually made NSM FRP bars. Constr. Build Mater 36: 990-1000. https://doi.org/10.1016/j.conbuildmat.2012.06.068

Hanoon, A.N.; Jaafar, M.; Hejazi, F.; Abdul Aziz, F.N. (2017) Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique. Engineering Optimization 49 (9):1483-1501. https://doi.org/10.1080/0305215X.2016.1256729

Marceau, M.; Nisbet, M.A.; Van Geem, M.G. (2006) Life cycle inventory of portland cement manufacture. Portland Cement Association, Illinois.

Consultancy, A. (2010) 2010 Guidelines to Defra/DECC's GHG Conversion Factors for Company Reporting; produced by AEA for the Department of Energy and Climate Change (DECC) and the Department for Environment, Food and Rural Affairs (Defra), Version 1.2. 1; download at http://archive.defra.gov.uk/environment/ business/reporting/conversion-factors.htm; also available in Excel file format; last accessed June 2012.

ASTM-C192 (2003) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory Annual Book of ASTM Standards 4.02. ASTM International, West Conshohocken, PA.

Khuri, A.I.; John, A. (1996) Cornell, Response Surfaces, Designs and Analyses, Revised and Expanded [edition], Chapter 2, Matrix Algebra, Least Squares, the Analysis of Variance, and Principles of Experimental Design. Marcel Dekker, Inc., New York.

Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Borror, C.M.; Kowalski, S.M. (2004) Response surface methodology: a retrospective and literature survey. J. quality technology 36 (1):53. https://doi.org/10.1080/00224065.2004.11980252

Azargohar, R.; Dalai, A. (2005) Production of activated carbon from Luscar char: experimental and modeling studies. Microporous and mesoporous materials 85 (3):219-225. https://doi.org/10.1016/j.micromeso.2005.06.018

Pouran, S.R. Aziz, A.A.; Daud, W.; Shamshirband, S. (2015) Estimation of the effect of catalyst physical characteristics on Fenton-like oxidation efficiency using adaptive neuro-fuzzy computing technique. Measurement 59:314-328. https://doi.org/10.1016/j.measurement.2014.09.060

Moghaddam, T.B.; Soltani, M.; Karim, M.R.; Baaj, H. (2015) Optimization of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology. Measurement 74:159-169. https://doi.org/10.1016/j.measurement.2015.07.012

Soltani, M.; Moghaddam, T.B.; Karim, M.R.; Baaj, H. (2015) Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology.Engineering Failure Analysis 58:238-248. https://doi.org/10.1016/j.engfailanal.2015.09.005

Pourtahmasb, M.S.; Karim, M.R.; Shamshirband, S. (2015) Resilient modulus prediction of asphalt mixtures containing recycled concrete aggregate using an adaptive neuro-fuzzy methodology. Constr. Build Mater 82:257-263. https://doi.org/10.1016/j.conbuildmat.2015.02.030

Can, M.Y.; Kaya, Y.; Algur, O.F. (2006) Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris. Bioresource technology 97 (14):1761-1765. https://doi.org/10.1016/j.biortech.2005.07.017 PMid:16162409

Aksu, Z.; Gönen, F. (2006) Binary biosorption of phenol and chromium (VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves. Separation and Purification Technology 49 (3):205-216. https://doi.org/10.1016/j.seppur.2005.09.014

.

Körbahti, B.K.; Rauf, M.A. (2009) Determination of optimum operating conditions of carmine decoloration by UV/H 2 O 2 using response surface methodology. J. hazardous materials 161 (1):281-286. https://doi.org/10.1016/j.jhazmat.2008.03.118 PMid:18462881

Kulkarni, R.V.; Venayagamoorthy, G.K. (2011) Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41 (2):262-267. https://doi.org/10.1109/TSMCC.2010.2054080

Eberhart, R.; Kennedy, J. (1995) A new optimizer using particle swarm theory. In: Micro Machine and Human Science. MHS'95., Proceedings of the Sixth International Symposium on, 1995. IEEE, pp 39-43. https://doi.org/10.1109/MHS.1995.494215

Hanoon, A.N.; Jaafar, M.; Hejazi, F.; Aziz, F.N. (2017) Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture. Constr. Build Mater 147:428-447. https://doi.org/10.1016/j.conbuildmat.2017.04.094

EN, B. (2000) 12390-1 Testing hardened concrete-Part 1: Shape, dimensions and other requirements for specimens and moulds. European Committee for Standardization.

EN, B. (2009) 12390-3 (2009) Testing hardened concrete- part 3: compressive strength of test specimens. British Standards Institution.

EN, B. (2009) 12390-5. Testing hardened concrete-Part 5: flexural strength of test specimens. British Standards Institution-BSI and CEN European Committee for Standardization.

EN, B. (2009) 12390-6 2009 Testing hardened concrete, Part 6: tensile splitting strength of test specimens. British Standards Institution.

Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. (2001) Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment 26 (1):303-329. https://doi.org/10.1146/annurev.energy.26.1.303

Gustavsson, L.; Sathre, R. (2006) Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment 41 (7):940-951. https://doi.org/10.1016/j.buildenv.2005.04.008

Worrell, E.; Van Heijningen, R.; De Castro, J.; Hazewinkel, J.; De Beer, J.; Faaij, A.; Vringer, K. (1994) New gross energy-requirement figures for materials production. Energy 19 (6):627-640. https://doi.org/10.1016/0360-5442(94)90003-5

Hong, J.; Shen, G.Q.; Feng, Y.; Lau, W.S.; Mao, C. (2015) Greenhouse gas emissions during the construction phase of a building: a case study in China. J. Cleaner Production 103:249-259. https://doi.org/10.1016/j.jclepro.2014.11.023

DECC (2011) 2011 guidelines to DEFRA/DECC's GHG conversion factors for company reporting: Methodology paper for emission factors.

Publicado

2019-06-30

Cómo citar

Ghayeb, H. H., Razak, H. A., Sulong, N. R., Hanoon, A. N., Abutaha, F., Ibrahim, H. A., Gordan, M., & Alnahhal, M. F. (2019). Predicción de las propiedades mecánicas de un hormigón utilizando técnicas inteligentes para reducir las emisiones de CO2. Materiales De Construcción, 69(334), e190. https://doi.org/10.3989/mc.2019.07018

Número

Sección

Artículos