Predicción de las propiedades mecánicas de un hormigón utilizando técnicas inteligentes para reducir las emisiones de CO2
DOI:
https://doi.org/10.3989/mc.2019.07018Palabras clave:
Emisión de CO2, Propiedades mecánicas del hormigón, Diseño óptimo de la mezcla, Optimización por nube de partículas, Método de respuesta de superficieResumen
La contribución a las emisiones globales de CO2 debidas a la producción de hormigón está aumentando. En este trabajo, se investigó el efecto de los componentes de la mezcla de hormigón en las propiedades del mismo y las emisiones de CO2. Los materiales estudiados fueron 47 mezclas, que consistieron en cemento Portland ordinario (OPC) tipo I, árido grueso, arena de río y aditivos químicos. Se utilizaron algoritmos de metodología de respuesta de superficie (RSM) y optimización de nube de partículas (PSO) para evaluar los componentes de la mezcla a diferentes niveles simultáneamente. Se elaboraron modelos cuadráticos y lineales para ajustar los resultados experimentales. Basándose en estos modelos, utilizando RSM y PSO, la mezcla de hormigón logró propiedades óptimas de ingeniería. La mezcla resultante requerida para obtener las propiedades mecánicas deseadas para el hormigón fue de 1.10-2.00 árido fino / cemento, 1.90-2.90 árido grueso / cemento, 0.30-0.4 agua / cemento y 0.01-0.013 aditivos químicos / cemento. Ambos métodos tuvieron más del 94% de precisión, en comparación con los resultados experimentales. Finalmente, al emplear los métodos RSM y PSO, el número de mezclas experimentales probadas podría reducirse, ahorrando tiempo y dinero, así como disminuyendo las emisiones de CO2.
Descargas
Citas
Khokhar, M.; Rozière, E.; Turcry, P.; Grondin, F.; Loukili, A. (2010) Mix design of concrete with high content of mineral additions: Optimisation to improve early age strength. Cem. Concr. Com. 32 (5):377-385. https://doi.org/10.1016/j.cemconcomp.2010.01.006
Koo, B.; Kim, J.; Kim, S.; Mun, S. (2014) Material and structural performance evaluations of Hwangtoh admixtures and recycled PET fiber-added eco-friendly concrete for CO2 emission reduction. Materials 7 (8):5959-5981. https://doi.org/10.3390/ma7085959 PMid:28788171 PMCid:PMC5456196
Ortega, J.; Sánchez, I.; Cabeza, M.; Climent, M. (2017) Short-term behavior of slag concretes exposed to a real in situ mediterranean climate environment. Materials 10 (8):915. https://doi.org/10.3390/ma10080915 PMid:28786936 PMCid:PMC5578281
Turner, L.; Collins, F. (2013) Carbon dioxide equivalent (CO 2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build Mater 43:125-130. https://doi.org/10.1016/j.conbuildmat.2013.01.023
Flower, D.J.; Sanjayan, J.G. (2007) Green house gas emissions due to concrete manufacture. The international Journal of life cycle assessment 12 (5):282. https://doi.org/10.1065/lca2007.05.327
Gartner, E. (2004) Industrially interesting approaches to "low-CO2" cements. Cem. Concr. Res. 34 (9):1489-1498. https://doi.org/10.1016/j.cemconres.2004.01.021
Josa, A.; Aguado, A.; Heino, A.; Byars, E.; Cardim, A. (2004) Comparative analysis of available life cycle inventories of cement in the EU. Cem. Concr. Res. 34 (8):1313- 1320. https://doi.org/10.1016/j.cemconres.2003.12.020
Khodaii, A.; Haghshenas, H.; Tehrani, H.K.; Khedmati, M. (2013) Application of response surface methodology to evaluate stone matrix asphalt stripping potential. KSCE J. Civil Engineering 17 (1):117. https://doi.org/10.1007/s12205-013-1698-6
Kavussi, A.; Qorbani, M.; Khodaii, A.; Haghshenas, H. (2014) Moisture susceptibility of warm mix asphalt: a statistical analysis of the laboratory testing results. Constr. Build Mater 52:511-517. https://doi.org/10.1016/j.conbuildmat.2013.10.073
Khodaii, A.; Haghshenas, H.; Tehrani, H.K. (2012) Effect of grading and lime content on HMA stripping using statistical methodology. Constr. Build Mater 34:131-135. https://doi.org/10.1016/j.conbuildmat.2012.02.025
Yang, K.H.; Jung, Y.B.; Cho, M.S.; Tae, S.H. (2015) Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Cleaner Prod. 103: 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018
Moghaddam, T.B.; Soltani, M.; Karim, M.R. (2015) Stiffness modulus of Polyethylene Terephthalate modified asphalt mixture: A statistical analysis of the laboratory testing results. Materials & Design 68:88-96. https://doi.org/10.1016/j.matdes.2014.11.044
Chinneck, J.W. (2006) Practical optimization: a gentle introduction. Systems and Computer Engineering, Carleton University, Ottawa http://www.sce.carleton.ca/ faculty/chinneck/po.html.
Van Stralen, K.J.; Jager, K.J.; Zoccali, C.; Dekker, F.W. (2008) Agreement between methods. Kidney international 74 (9):1116-1120. https://doi.org/10.1038/ki.2008.306 PMid:18596728
Gordan, M.; Razak, H.A.; Ismail, Z.; Ghaedi, K. (2017) Recent developments in damage identification of structures using data mining. Latin American Journal of Solids and Structures 13. https://doi.org/10.1590/1679-78254378
Islam, M.; Mansur, M.; Maalej, M. (2005) Shear strengthening of RC deep beams using externally bonded FRP systems. Cem. Concr. Com 27 (3):413-420. https://doi.org/10.1016/j.cemconcomp.2004.04.002
Zhang, Z.; Hsu, C. (2005) Shear strengthening of reinforced concrete beams using carbon-fiber-reinforced polymer laminates. J. Comp. Construc. 9 (2):158-169. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158)
Benachour, A.; Benyoucef, S.; Tounsi, A. (2008) Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate. Engineering Structures 30 (11): 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007
Jalali, M.; Sharbatdar, M.K.; Chen, J.F.; Alaee, F.J. (2012) Shear strengthening of RC beams using innovative manually made NSM FRP bars. Constr. Build Mater 36: 990-1000. https://doi.org/10.1016/j.conbuildmat.2012.06.068
Hanoon, A.N.; Jaafar, M.; Hejazi, F.; Abdul Aziz, F.N. (2017) Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique. Engineering Optimization 49 (9):1483-1501. https://doi.org/10.1080/0305215X.2016.1256729
Marceau, M.; Nisbet, M.A.; Van Geem, M.G. (2006) Life cycle inventory of portland cement manufacture. Portland Cement Association, Illinois.
Consultancy, A. (2010) 2010 Guidelines to Defra/DECC's GHG Conversion Factors for Company Reporting; produced by AEA for the Department of Energy and Climate Change (DECC) and the Department for Environment, Food and Rural Affairs (Defra), Version 1.2. 1; download at http://archive.defra.gov.uk/environment/ business/reporting/conversion-factors.htm; also available in Excel file format; last accessed June 2012.
ASTM-C192 (2003) Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory Annual Book of ASTM Standards 4.02. ASTM International, West Conshohocken, PA.
Khuri, A.I.; John, A. (1996) Cornell, Response Surfaces, Designs and Analyses, Revised and Expanded [edition], Chapter 2, Matrix Algebra, Least Squares, the Analysis of Variance, and Principles of Experimental Design. Marcel Dekker, Inc., New York.
Myers, R.H.; Montgomery, D.C.; Vining, G.G.; Borror, C.M.; Kowalski, S.M. (2004) Response surface methodology: a retrospective and literature survey. J. quality technology 36 (1):53. https://doi.org/10.1080/00224065.2004.11980252
Azargohar, R.; Dalai, A. (2005) Production of activated carbon from Luscar char: experimental and modeling studies. Microporous and mesoporous materials 85 (3):219-225. https://doi.org/10.1016/j.micromeso.2005.06.018
Pouran, S.R. Aziz, A.A.; Daud, W.; Shamshirband, S. (2015) Estimation of the effect of catalyst physical characteristics on Fenton-like oxidation efficiency using adaptive neuro-fuzzy computing technique. Measurement 59:314-328. https://doi.org/10.1016/j.measurement.2014.09.060
Moghaddam, T.B.; Soltani, M.; Karim, M.R.; Baaj, H. (2015) Optimization of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology. Measurement 74:159-169. https://doi.org/10.1016/j.measurement.2015.07.012
Soltani, M.; Moghaddam, T.B.; Karim, M.R.; Baaj, H. (2015) Analysis of fatigue properties of unmodified and polyethylene terephthalate modified asphalt mixtures using response surface methodology.Engineering Failure Analysis 58:238-248. https://doi.org/10.1016/j.engfailanal.2015.09.005
Pourtahmasb, M.S.; Karim, M.R.; Shamshirband, S. (2015) Resilient modulus prediction of asphalt mixtures containing recycled concrete aggregate using an adaptive neuro-fuzzy methodology. Constr. Build Mater 82:257-263. https://doi.org/10.1016/j.conbuildmat.2015.02.030
Can, M.Y.; Kaya, Y.; Algur, O.F. (2006) Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris. Bioresource technology 97 (14):1761-1765. https://doi.org/10.1016/j.biortech.2005.07.017 PMid:16162409
Aksu, Z.; Gönen, F. (2006) Binary biosorption of phenol and chromium (VI) onto immobilized activated sludge in a packed bed: prediction of kinetic parameters and breakthrough curves. Separation and Purification Technology 49 (3):205-216. https://doi.org/10.1016/j.seppur.2005.09.014
.
Körbahti, B.K.; Rauf, M.A. (2009) Determination of optimum operating conditions of carmine decoloration by UV/H 2 O 2 using response surface methodology. J. hazardous materials 161 (1):281-286. https://doi.org/10.1016/j.jhazmat.2008.03.118 PMid:18462881
Kulkarni, R.V.; Venayagamoorthy, G.K. (2011) Particle swarm optimization in wireless-sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41 (2):262-267. https://doi.org/10.1109/TSMCC.2010.2054080
Eberhart, R.; Kennedy, J. (1995) A new optimizer using particle swarm theory. In: Micro Machine and Human Science. MHS'95., Proceedings of the Sixth International Symposium on, 1995. IEEE, pp 39-43. https://doi.org/10.1109/MHS.1995.494215
Hanoon, A.N.; Jaafar, M.; Hejazi, F.; Aziz, F.N. (2017) Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture. Constr. Build Mater 147:428-447. https://doi.org/10.1016/j.conbuildmat.2017.04.094
EN, B. (2000) 12390-1 Testing hardened concrete-Part 1: Shape, dimensions and other requirements for specimens and moulds. European Committee for Standardization.
EN, B. (2009) 12390-3 (2009) Testing hardened concrete- part 3: compressive strength of test specimens. British Standards Institution.
EN, B. (2009) 12390-5. Testing hardened concrete-Part 5: flexural strength of test specimens. British Standards Institution-BSI and CEN European Committee for Standardization.
EN, B. (2009) 12390-6 2009 Testing hardened concrete, Part 6: tensile splitting strength of test specimens. British Standards Institution.
Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. (2001) Carbon dioxide emissions from the global cement industry. Annual review of energy and the environment 26 (1):303-329. https://doi.org/10.1146/annurev.energy.26.1.303
Gustavsson, L.; Sathre, R. (2006) Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment 41 (7):940-951. https://doi.org/10.1016/j.buildenv.2005.04.008
Worrell, E.; Van Heijningen, R.; De Castro, J.; Hazewinkel, J.; De Beer, J.; Faaij, A.; Vringer, K. (1994) New gross energy-requirement figures for materials production. Energy 19 (6):627-640. https://doi.org/10.1016/0360-5442(94)90003-5
Hong, J.; Shen, G.Q.; Feng, Y.; Lau, W.S.; Mao, C. (2015) Greenhouse gas emissions during the construction phase of a building: a case study in China. J. Cleaner Production 103:249-259. https://doi.org/10.1016/j.jclepro.2014.11.023
DECC (2011) 2011 guidelines to DEFRA/DECC's GHG conversion factors for company reporting: Methodology paper for emission factors.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.