Materiales de Construcción, Vol 61, No 304 (2011)

Valorisation of phosphogypsum as building material: Radiological aspects


https://doi.org/10.3989/mc.2010.58910

H. Tayibi
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), Madrid, Spain

C. Gascó
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

N. Navarro
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

A. López-Delgado
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), Madrid, Spain

A. Álvarez
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

L. Yagüe
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

F. J. Alguacil
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), Madrid, Spain

F. A. López
Centro Nacional de Investigaciones Metalúrgicas (CENIM, CSIC), Madrid, Spain

Abstract


Nowadays, alternative uses of phosphogypsum (PG) in the building industry are being considered in several countries; however, the natural radioactivity level in the PG could be a restriction for those uses. United States Environmental Protection Agency (US-EPA) classified PG as Technologically Enhanced Naturally Occurring Radioactive Material (TENORM). This drawback could be avoided controlling its percentage in the cement preparation and the radionuclides content in the other raw materials used in its production, and calculating the activity concentration index (I) in the final by-products.

The valorization of PG as a building material has been studied, from a radiological point of view, by developing a new stabilisation/solidification process. PG is incorporated within a polymeric sulphur matrix, obtaining a concrete-like material, which presents lower natural radioactive content than the initial PG. The 226Ra content of this material ranged between 26-27 Bq·kg-1 and it is quite similar to that of common Spanish building materials.

Keywords


Phosphogypsum; natural radioactivity; TENORM; building materials; sulphur concrete

Full Text:


PDF

References


(1) Yang, J.; Liu, W.; Zhang, L.; Xiao B.: “Preparation of load-bearing building materials from autoclaved phosphogypsum”. Const. Build. Mat. 23 (2009), pp. 687-693. doi:10.1016/j.conbuildmat.2008.02.011

(2) Tayibi, H.; Choura, M.; López, F. A.; Alguacil, J. A.; López-Delgado, A.: “Environmental impact and management of phosphogypsum (Review)”. J. Environ. Manage. 90 (2009), pp. 2377-2386. doi:10.1016/j.jenvman.2009.03.007 PMid:19406560

(3) Soil amendments and Environmental Quality. Aquiculture and Environmental Series. Ed. By Jack, E. Rechcigl. Boca Raton, Lewis Publishers (CRC Press), Florida, (1995), pp. 504.

(4) Rutherford, P. M.; Dudas, M. J.; Samek, R. A.: “Environmental impacts of phosphogypsum”. Sci. Total Environ . 149 (1-2) (1994), pp. 1-38. doi:10.1016/0048-9697(94)90002-7

(5) Kovler, K.: “Radiological constraints of using building materials and industrial byproducts”. Const. Build. Mat. 23 (2009), pp. 246-253. doi:10.1016/j.conbuildmat.2007.12.010

(6) Bolivar, J. P.; García-Tenorio, R.; Vaca, F.: “Radioecological study of an estuarine system located in the south of Spain”. Water Research 34 (2000), pp. 2941-2950. doi:10.1016/S0043-1354(99)00370-X

(7) US-EPA. U. S. Environmental Protection Agency, 2002. “National Emission Standards for Hazardous Air Pollutants, Subpart R”, (2002).

(8) Min, Y.; Jueshi, Q.; Ying, P.: “Activation of fly ash-lime systems using calcined phosphogypsum”. Const. Build. Mat. 22 (2008), pp. 1004-1008. doi:10.1016/j.conbuildmat.2006.12.005

(9) Weiguo, S.; Mingkai, Z.; Qinglin, Z.: “Study on lime–fly ash–phosphogypsum binder”. Const. Build. Mat. 21 (7) (2007), pp. 1480-1485.

(10) Degirmenci, N.: “Utilisation of phosphogypsum as raw and calcined material in manufacturing of building products”. Const. Build. Mat. 22 (2008), pp. 1857-1862. doi:10.1016/j.conbuildmat.2007.04.024

(11) Yang, M.; Qian, J.; Pang, Y.: “Activation of fly ash-lime systems using calcined phosphogypsum”. Const. Build. Mat. 22 (2008), pp. 1004-1008. doi:10.1016/j.conbuildmat.2006.12.005

(12) Taher, M. A.: “Influence of thermally treated phosphogypsum on the properties of Portland slag cement”. Resour. Conserv. Recycl. 52 (1) (2007), pp. 28-38. doi:10.1016/j.resconrec.2007.01.008

(13) Elkhadiri, I.; Diouri, A.; Boukhari, A.; Puertas, F.; Vázquez, T.: “Obtaining a sulfoaluminate belite cement by industrial wastes”. Mater. Construcc. 270 (5) (2003), pp. 57-69.

(14) NRCP Report 094. Exposure of the Population in the United States and Canada from Natural Background Radiation, (1987).

(15) US-EPA. “Potential uses of Phosphogypsum and associated risks: Background information document”. EPA 402-r92-002. US-EPA, Washington, DC, (1992).

(16) Mas, J. L.; San Miguel, E. G.; Bolívar, J. P.; Vaca F.; Pérez-Moreno J. P.: “An assay on the effect of preliminary restoration tasks applied to a large TENORM wastes disposal in the south-west of Spain”. Sci. Total Environ. 364 (2006), pp. 55–66. doi:10.1016/j.scitotenv.2005.11.006 PMid:16343599

(17) Burnett, W. C.; Schultz, M. K.; Carter, D. H.: “Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate”. J. Environ Radioact. 32 (1-2) (1996), pp. 33-51. doi:10.1016/0265-931X(95)00078-O

(18) El Afifi, E. M.; Hilal, M. A.; Attallah, M. F.; El-Reefy, S. A.: “Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production”. J. Environ Radioact. 100 (2009), pp. 407-412. doi:10.1016/j.jenvrad.2009.01.005 PMid:19272681

(19) Soil amendments and Environmental Quality. Agriculture and Environmental Series. Ed. By Jack, E. Rechcigl. Boca Raton, Lewis Publishers (CRC Press), Florida, (1995), pp 504.

(20) Radiological Protection Principles concerning the Natural Radioactivity of Building Materials. Radiation Protection 112, European Commission. Directorate-General Environment, Nuclear Safety and Civil Protection, (1999).

(21) Vroom, A. H.: “Sulfur polymer concrete and its applications”. In: Proceedings of Seventh International Congress on Polymers in Concrete. Moscow, September, (1992), pp. 606–21.

(22) STARTcreteTM Technologies Inc. Laboratory Procedure for Producing STARcretesTM Test Specimens. Tehnical Report, (2000).

(23) Norma Española UNE 102031; Yesos y escayolas de construcción, Métodos de ensayo físicos y mecánicos, Sep, (1999).

(24) Flynn, W. W.: “The determination of low level of polonium-210 in environmental materials”. Analytica Chimica Acta. 43 (1968), pp. 221-227. doi:10.1016/S0003-2670(00)89210-7

(25) Mazzilli, B.; Saueia, C.: “Radiological Implications of Using Phosphogypsum as a building material in Brazil”. Radiation Protection Dosimetry, Technical Note. 86 (1) (1999), pp. 63–67.

(26) Hull, C. D.; Burnett, W. C.: “Radiochemistry of Florida phosphogypsum”. J. Environ. Radioact. 32 (1996), pp. 213-238. doi:10.1016/0265-931X(95)00061-E

(27) The Commission of the European Communities. Commission Recommendation of 21 February 1990 on the protection of the public against indoor exposure to radon 90/143/EURATOM. Official Journal L-80, (1990).

(28) The Council of European Communities. Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of the Member States relating to construction products. Official Journal L-040. (1989).

(29) International Commission on Radiological Protection. Protection against Radon222 at Home and at Work. ICRP Publication 65 (Oxford: Pergamon Press), (1994).

(30) IAEA-TECDOC-1472.: “Naturally Occurring Radioactive Materials (NORM IV)”. Proceedings of an international conference held in Szczyrk, Poland, 17–21 May, (2004).




Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es