NORM waste, cements, and concretes. A review




NORM waste, Cements, Concretes, Geopolymers, Radioactivity, Behaviour


The use of industrial waste and/or by-products as alternative sources of raw materials in building materials has become standard practice. The result, more sustainable construction, is contributing to the institution of a circular economy. Nonetheless, all necessary precautions must be taken to ensure that the inclusion and use of such materials entail no new health hazard for people or their environment. Due to the processes involved in generating industrial waste/by-products, these alternative or secondary materials may be contaminated with heavy metals, other undesirable chemicals or high levels of natural radioactivity that may constrain their use. In-depth and realistic research on such industrial waste is consequently requisite to its deployment in building materials. This paper reviews the basic concepts associated with radioactivity and natural radioactivity, focusing on industrial waste/by-products comprising Naturally Occurring Radioactive Materials (NORM) used in cement and concrete manufacture. Updated radiological data are furnished on such waste (including plant fly ash, iron and steel mill slag, bauxite and phosphogypsum waste) and on other materials such as limestone, gypsum and so on. The paper also presents recent findings on radionuclide activity concentrations in Portland cements and concretes not bearing NORMs. The role of natural aggregate in end concrete radiological behaviour is broached. The radiological behaviour of alternative non-portland cements and concretes, such as alkali-activated materials and geopolymers, is also addressed.


Download data is not yet available.


Mindess, S. (2019) Sustainability of Concrete. Chapter 1. Sustainability of Concrete. Modern Concrete Techonology Book 17. Ed.: Routledge.

Circular Economy. UE:, 2016.

ONU. Sustainability Development Goals. Paris. 2015.

Roadmap 2020. European Commission.

García-Díaz. I.; Puertas, F. (2011) Empleo de residuos cerámicos como materia prima alternativa en la fabricación de cemento Portland (in spanish). Monografías del IETcc. Ed. CSIC.

Savić, A.; Martinović, S.; Vlahović, M.; Volkov-Husović, T. (2020) Effects of waste sulfur content on properties of self-compacting concrete. Mater. Construcc. 70 [338], e216,

Gonzalez-Triviño, I.; Pascual-Cosp, J.; Moreno, B.; Benitez-Guerrero, M. (2019) Manufacture of ceramics with high mechanical properties from red mud and granite waste. Mater. Construcc. 69 [333], e180.

Scrivener, K.L.; John, V. M.; Gartner, E.M. (2016) Eco-efficient cements: Potential, economically viable solutions for a low-CO2, cement based materials industry. United Nations & Environment Programm, 2016.

Mora, J.C.; Baeza, A.; Robles, B.; Sanz, J. (2016) Assessment for the management of NORM wastes in conventional hazardous and nonhazardous waste landfills. J. Haz. Mat. 310, 161-169.

Labrincha, J.; Puertas, F.; Schroeyers, W.; Kovler, K.; Pontikes, Y.; Nuccetelli, C.; Krivenko, P.V.; Kovalchuk, O.; Petropavlovsky, O.; Komljenovic, M.; Fidanchevski, E.; Wiegers, R.; Volceanov. E.; Gunay, E.; Sanjuán, M. A.; Ducman, V.; Angjusheva, B.; Bajare, D.; Kovacs, T.; Bator, G.; Schreurs, S.; Aguiar, J.; Provis, J.L. (2017) From NORM by-products to building materials. In Naturally Ocurring Radiactive Materials in Construction. Chapter 7. Ed. W. Schroeyers. Elservier, 183-252.

Martín Matarranz, J.L. (2013) Riesgo Radiológico de las industrias no nucleares. Ph. D Thesis. Universidad de Cantabria.

Kovler. K.; Fridman, H.; Michalik, B.; Schroeyers, W.; Tsapalov, A.; Antropov, S.; Bituh, T.; Nicolaides, D. (2017) Basic aspects of natural radioactivity. In Naturally Ocurring Radiactive Materials in Construction. Ed. W. Schroeyers. Elservier. Chapter 3. 13-16.

Piedecausa García, B.; Chinchón Payá, S.; Morales, M.A.; Sanjuán Barbudo, M.A. (2011) Radiactividad natural de los materiales de construcción. Aplicación al hormigón. Parte II. Radiación interna: Gas radón. Cemento y Hormigón. 946, 34-50.

Pastor, A.; Dovorzhak, A.; Mora, J.C. (2016) Hacia un inventario español de industrias generadoras de residuos NORM. Radioprotección. 86, 28-32.

Orden IET/1946/2013, de 17 de octubre, por la que se regula la gestión de los residuos generados en las actividades que utilizan materiales que contienen radionucleidos naturales. 23 de octubre de 2013 (in spanish).

Allam, M.E.; Bakhoum, E.S.; Gara, G.L.K. (2014) Re-use of granites sludge in producing Green concrete. ARPN. J. Eng. Appl. Sci. 9 [12], e2737. 2731-2737.

Condomines, M.; Hemond, C.; Allègre, C. (1988) UThRa radioactive disequilibria and magmatic processes. Earth Planet. Sci. Lett. 90 [3], 243-262.

Plant, J.A.; Saunders, A. D. (1996) The Radioactive Earth. Rad. Protec. Dosim. 68 [1-2], 25-36.

Suárez-Navarro, J.A.; Alonso, M.M.; Gascó, C.; Pachón, A.; Carmona-Quiroga, P.M.; Argiz, C.; Sanjuán, M.A.; Puertas, F. (accepted 2021) Effect of particle size and composition of granitic sands on the radiological behavior of mortars. Bol. Soc. Esp. Cer. Vid. Available online 2 June 2021.

Kovacs, T.; Bator, G.; Schroeyers, W.; Labrincha, J.; Puertas, F.; Hegedus, M.; Nicolaides, D.; Sanjuán, M.A.; Krivenko, P.V.; Grubesa, I.N.; Sas, Z.; Michalic, B.; Anagnostakis, M.; Barisic, I.; Nuccetelli, C.; Trevisi, R.; Croymans, T.; Schreurs, S.; Todorovic, N.; Vaičiukynienė-Palubinskaitė, D.; Bistrickaitė, R.; Tkaczyk, A.; Kovler, K.; Wiegers, R.; P.V.; Doherty, R. (2017) From raw materials to NORM by-products. In Naturally Ocurring Radiactive Materials in Construction. Chapter 6. Ed. W. Schroeyers. Elservier. 135-182.

EN-197-1: (2011). Part 1: Composition, specifications and conformity criteria for common cements.

Puertas, F.; Blanco-Varela, M. T.; Palomo, A.; Vázquez, T. (1988) Reactivity and burnability of raw mixes made with crystallized blastfurnace slags. Part I. and Part II. Zement-Kalk-Gips; 41, (389-402) and (628-631).

Puertas, F.; García-Díaz, I.; Palacios, M.; Gazulla, M.F.; Gómez, M.P.; Orduña, M. (2010) Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies. Cem. Concr. Comp. 32 [3], 175-186

Blanco-Varela, M. T.; Puertas, F.; Palomo, A.; Vázquez, T.; Artola, P.; Alfaro, L. (2000) Aptitud a la cocción de crudos de cemento Portland usando Paval como materia prima. Cemento y Hormigón (in Spanish) 809, 358-377.

Puertas, F.; Blanco-Varela, M.T. (2004). Use of alternative fuels in cement manufacture. Effect on clinker and cement characteristics and properties. Mater. Construcc. 54 [274], 51-64.

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022.

Robayo-Salazar, R.; Mejía de Gutierrez, R.; Puertas, F. (2019) Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization. Mater. Construcc. 69 [335], e191

Pacheco-Torgal, F.; Labrincha, J.A.; Leonelli, C.; Palomo, A.; Chindaprasirt, P. (Eds.). (2015) Handbook of Alkali-activated cements, mortars and concretes. Woodhead Publishing Series in Civil and Structural Engineering.

Provis, J.L.; van Deventer, J.J. (Eds). (2014) Alkali Activated Materials. State of the Art Report, ILEM TC 224-AAM. Springer.

Shi, C.; Krivenko, P.; Roy, D. (2006) Alkali-Activated Cements and Concretes. Taylor and Francis, London and New York.

Shi, C.; Fernández Jiménez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res., 41, 750-763.

Puertas, F.; Torres-Carrasco, M. (2014) Use of glass waste as an activator in the preparation of alkali-activated slag cements. Mechanical strength and paste characterisation. Cem. Concr. Res., 57, 95-104.

Torres-Carrasco, M.; Puertas, F. (2015). Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod. 90, 397-408.

Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construcc. 63 [311], 361-375.

Shi, C.; Shi, Z.; Hu, X.; Zhao, R.; Chong, L. (2015) A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater. Struct. 48, 621-628.

Pérez-Cortes, P.; Escalante-García, J.I. (2020) Alkali activated metakaolin with high limestone contents-Statistical modeling of strength and environmental and cost analyses. Cem. Concr. Comp. 106, 103450.

Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. (2000) Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem. Concr. Res. 30 [10], 1625-1632.

Torres-Carrasco, M.; Puertas, F. (2017) Waste glass as a precursor in alkaline activation: chemical process and hydration products. Construc. Build. Mat. 139, 342-354.

Payá, J.; Agrela, F.; Rosales, J.; Martín Morales, M.; Borrachero, M.V. (2019) Application of alkali-activated industrial waste. New Trends Eco-effic. Recyc. Concr. 357-424.

Mas, M.A.; Tashima, M.M.; Payá, J.; Borrachero, M.V.; Soriano, L.; Monzó, J.M. (2015) A binder from alkali activation of FCC waste: Use in roof tiles fabrication. Key Eng. Mat. 668, 411-418.

Puertas, F.; Barba, A.; Gazulla, M.F.; Gómez, M.P.; Palacios, M.; Martínez-Ramírez, S. (2006) Ceramic wastes as raw materials in pórtland cement clinker fabrication: characterization and alkaline activation. Mater. Construcc. 56 [281], 73-84.

Burciaga-Díaz, O.; Durón-Sifuentes, M.; Díaz-Guillén, J.A.; Escalante-García, J.I. (2020) Effect of waste glass incorporation on the properties of geopolymers formulated with low purity metakaolin. Cem. Concr. Comp. 107, 103492.

Alonso, M.M.; Gascó, C.; Martín Morales, M.; Suárez-Navarro, J.A.; Zamorano, M.; Puertas, F. (2019) Olive Biomas ash as an alternative activator in geopolymer formation: A study of strenth, radiology and leaching behaviour. Cem. Concr. Comp. 104, 103384.

de Moraes Pinheiro, S.M.; Font, A.; Soriano, L.; Tashima, M.M.; Monzó, J.M.; Borrachero, M.V.; Payá, J. (2018) Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construc. Build. Mat. 178, 30. 327-338.

Deloitte (2017) Study on Resource Efficient Use of Mixed Wastes, Improving of construction and demolition waste - Final Report. Prepared for the 631 European Commission, DG ENV [31] DWC.

Pellegrino, C.; Faleschini, F.; Meyer, C. (2019) Recycled Materiales in Concrete, Chapter 2. Sustainability of Concrete. Ed. Pierre-Claude AÍtcin, Sidney Mindess, Modern Concrete Technology 17.

Zhang, L.W.; Sojobi, A.O.; Kodur, V.K.R.; Liew, K.M. (2019) Effective utilization and recycling of mixed recycled aggregates for a greener environment. J. Clean. Prod. 236, 117600.

Suarez-Navarro, J.A.; Lanzón, M.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Puertas, F. (2019). Radiological behaviour of pigments and water repellents in cement-based mortars. Construc. Build. Mat. 225, 879-885.

I.A.E.A. Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. Tech. Reports Ser. 419. Vienna, Austria 419. (2003).

CEN/TC 351. Construction products: Assessment of release of dangerous substances. Radiation from construction products - Dose assessment and classifications of emitted gamma radiation. (2013).

Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.

Suárez-Navarro, J.A.; Moreno-Reyes, A.M.; Gascó, C.; Alonso, M.M.; Puertas, F. (2020) Gamma spectrometry and LabSOCS-calculated efficiency in the radiological characterisation of quadrangular and cubic specimens of hardened portland cement paste. Rad. Phys. Chem. 171, 108709.

Suárez-Navarro, J. A.; Gascó, C.; Alonso, M.M.; Blanco-Varela, M.T.; Lanzón, M.; Puertas, F. (2018) Use of Genie 2000 and Excel VBA to correct for γ-ray interference in the determination of NORM building material activity concentrations. Appl. Radi. Isot. 142, 1-7.

Argiz, C.; Menéndez, E.; Moragues, A.; Sanjuán, M.A. (2015) Fly ash characteristics of Spanish coal-fired power plants. Afinidad. 72 [572], 269-277.

Skibsted, J.; Snellings, R. (2019) Reactivity of supplementary cementitious Materials (SCMs) in cement blends. Cem. Concr. Res. 124, 105799

Mora, J.C.; Robles, B.; Corbacho, J.A.; Gascó, C.; Gázquez, M.J. (2011). Modelling the behaviour of 210Po in high temperatura processes. J. Environ. Radioac. 102 [5], 520-526.

Temuujin, J.; Surenjav, E.; Ruescher, C.H.; Vahlbruch, J. (2019) Processing and uses of fly ash addressing radioactivity (critical review), Chemosph. 216, 866-88.

Zielinski, R.A.; Finkelman, R.B. (1997) Radioactive elements in coal and fly ash: abundance, forms, and environmental significance, US Geological Survey, 2327-6932.

World Nuclear Association. Naturally Occuring Radioactive Materials (july, 2015).

Karangelos, D.J.; Petropoulos, N.P.; Anagnostakis, M.J.; Hinis, E.P.; Simopoulos, S.E. (2004) Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plant. J. Env. Rad. 77 [3], 233-246.

Mora, J.C.; Baeza, A.; Robles, B.; Corbacho, J.A.; Cancio, D. (2009). Behaviour of natural radionuclides in coal combustión. Radioprotec. 44 [5], 577-580.

Nuccetelli, C.; Pontikes, Y.; Leonardi, F.; Trevisi, R. (2015) New perspectives and issues arising from the introduction of (NORM) residues in building materials: A critical assessment on the radiological behaviour. Construc. Build. Mat. 82, 323-331.

Kovler, K.; Haquin, G.; Manasherov, V.; Ne´eman, E.; Lavi, N. (2002) Natural radionuclides in building materials available in Israel. Build. Environ. 37 [5], 531-537.

Piedecausa, B.; Chinchón-Payá, S.; Morales, M.A.; Sanjuán, M.A. (2011) Radioactividad natural de los materiales de construcción. Aplicación al hormigón. Parte 1. Radiación externa: índice de riesgo radiactivo. Cem. Horm. 945, 40-65.

Puertas, F.; Alonso, M.M.; Torres-Carrasco, M.; Rivilla, P.; Gasco, C.; Yagüe, L.; Suárez, J. A.; Navarro, N. (2015) Radiological characterization of anhydrous/hydrated cements and geopolymers. Construc. Build. Mat. 101 [1], 1105-1112.

Alonso, M.M.; Suárez-Navarro, J.A.; Pérez-Sanz, R.; Gascó, C.; Moreno de los Reyes, A.M.; Lanzón, M.; Blanco-Varela, M.T.; Puertas, F. (2020) Data in Brief. 33, 106488.

Kovler, K.; Perevalov, A.; Steiner, V.; Metzger, L.A. (2005) Radon exhalation of cementitious materials made with coal fly ash: Part 1 - scientific background and testing of the cement and fly ash emanation. J. Env. Rad. 82 [3], 321-324.

Chinchón-Payá, S.; Piedecausa, B.; Hurtado, S.; Sanjuán, M.A.; Chinchón, S. (2011) Radiological impact of cement, concrete and admixtures in Spain. Rad. Meas. 46 [8], 734-735.

Gupta, M.; Kumar Mahur, A.; Varshney, R.; Sonkawade, R.G.; Verma, K.D.; Prasad, R. (2013) Measurement of natural radioactivity and radon exhalation rate in fly ash samples from a thermal power plant and estimation of radiation doses. Rad. Meas. 50, 160-165.

Kovler, K. (2012) Does the utilization of coal fly ash in concrete construction present a radiation hazard? Construc. Build. Mat. 29, 158-166.

Ignjatović, I.; Sas, Z.; Dragaš, J.; Somlai, J.; Kovács, T. (2017) Radiological and material characterization of high volume fly ash concrete. J. Env. Rad. 168, 38-45.

Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa, Ts.; MacKenzie, K.J.D. (2014) Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram. Int. 40, [10], 16475-16483.

Man-yin, W. T.; Leung, J.K.C. (1996) Radiological Impact of Coal Ash from the Power Plants in Hong Kong. J. Env. Rad. 30 [1], 1-14.

Turhan, Ş. (2008) Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. J. Env. Rad. 99 [2], 404-414.

Nuccetelli, C.; Trevisi, R.; Ignjatović, I.; Dragaš, J. (2017) Alkali-activated concrete with Serbian fly ash and its radiological impact. J. Env. Rad. 168, 30-37.

Puertas, F. (1993) Escorias alto horno: composición y comportamiento hidraúlico. Mater. Construcc. 43 [229], 37-48.

Pellegrino, C.; Faleschini, F.; Meyer, C. (2019). Recycled Materials in Concrete. Chapter 2. Sustainability of Concrete. Modern Concrete Techonology Book 17. Routledge Ed.

Liapis, I.; Papayianni, I. (2015) Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing. J. Haz. Mat. 283, 89-97.

Rodríguez, A.; Santamaría-Vicario, I.; Calderón, V.; Junco, C.; García-Cuadrado, J. (2019) Study of the expansión of cement mortars manufactured with landle furnace slag LFS. Mater. Construcc. 69 [334], e183.

Liu, J.; Yu, B.; Wang, Q. (2020) Application of steel slag in cement treated aggregate base course. J. Clean. Prod. 269, 121733.

Cooper, M.B. (2005) Naturally Ocurring Radioactive Materials (NORM) in Australian Industries- Review of Current Inventories and Future Generation. EnviroRad Serv. Pty. Ltd. ARPANSA. Melbourne.

Gijbels, K.; Iacobescu, R.I.; Pontikes, Y.; Vandevenne, N.; Schreurs, S.; Schroeyers, W. (2018) Radon immobilization potential of alkali-activated materials containing ground granulated blast furnace slag and phosphogypsum. Construc. Build. Mat. 184, 68-75.

Argiz, C.; Reyes, E.; Moragues, A. (2018) Ultrafine portland cement performance. Mater. Construcc. 68 [330], e157.

Goldman, A.; Bentur, A. (1993) The influence of microfillers on enhancement of concrete strength. Cem. Concr. Res. 23 [4], 962-972.

Instrucción de hormigón estructural (EHE-08) (2008). BOE 203." (In spanish).

Soria Santamaría, F. (1983) Las puzolanas y el ahorro energético en los materiales de construcción. Mater. Construcc. 33 [190-191], 69-84.

Robayo-Salazar, R.; Mejía de Gutiérrez, R.; Puertas, F. (2019) Alkali-activated binary concrete based on a natural pozzolan: physical, mechanical and microstructural characterization. Mater. Construcc. 69 [335], e191.

Ivanović, M.; Kljajević, Lj.; Nenadović, M.; Bundaleski, N.; Vukanac, I.; Todorović, B.; Nenadović, S. (2018) Physicochemical and radiological characterization of kaolin and its polymerization products. Mater. Construcc. 68 [330], e155 .

Voglis, N.; Kakali, G.; Chaniotakis, E.; Tsivilis, S. (2005) Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cem. Concr. Comp. 27 [2], 191-196.

Skaropoulou, A.; Tsivilis, S.; Kakali, G.; Sharp, J. H.; Swamy, R. N. (2009) Long term behavior of Portland limestone cement mortars exposed to magnesium sulfate attack. Cem. Concr. Comp. 31 [9], 628-636.

Turhan, Ş.; Baykan, U.N.; Şen, K. (2008) Measurement of the natural radioactivity in building materials used in Ankara and assessment of external doses. J. Rad. Protec. 28 [1], 83-91.

Turhan, Ş.; Gürbüz, G. (2008) Radiological significance of cement used in building construction in Turkey. Rad. Protec. Dos. 129 [4], 391-396.

Xhixha, G.; Bezzon, G.P.; Broggini, C.; Buso, G.P.; Caciolli, A.; Callegari, I.; De Bianchi, S.; Fiorentini, G.; Guastaldi, E.; Kaçeli Xhixha, M.; Mantovani, F.; Massa, G.; Menegazzo, R.; Mou, L.; Pasquini, A.; Rossi Alvarez, C.; Shyti, M. (2013) The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nucl. Chem. 295, 445-457.

Alonso, M.M.; Pasko, A.; Gascó, C.; Suarez, J.A.; Kovalchuk, O.; Krivenko, P.; Puertas, F. (2018) Radioactivity and Pb and Ni immobilization in SCM-bearing alkali-activated matrices. Construc. Build. Mat. 159, 745-754.

Maldonado-García, M. A.; Hernández-Toledo, U. I.; Montes-García, P.; Valdez-Tamez, P. L. (2018) The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars. Mater. Construcc. 68 [329], e148.

Pereira, A.M.; Moraes, J.C.B.; Moraes, M.J.B.; Akasaki, J.L.; Tashima, M.M.; Soriano, L.; Monzó, J.; Payá, J. (2018). Valorisation of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in Portland cement mixtures. Mater. Construcc. 68 [330], e153.

Gupta, A.; Gupta, N.; Shukla, A.; Goyal, R.; Kumar, S. (2020) Utilization of recycled aggregate, plastic, glass waste and coconut shells in concrete - a review. IOP Conf. Series: Mat. Sci. Eng. 804, 012034.

Kou, S.C.; Poon, C.S. (2009) Properties of self-compacting concrete prepared with recycled glass aggregate. Cem. Concr. Comp. 31 [2], 107-113.

Espinosa, S.; Golzarri, J.I.; Gamboa, I.; Jacobsen, I. (1986) Natural radioactivity in Mexican building Materials by SSNT. Nuclear Tracks Rad. Meassu. 12, [1-6], 767-770.

García‐Díaz, I.; Gázquez, M.J.; Bolivar, J.P.; López, F.A. (2016) Characterization and valoration of Norm wastes for construction materials - Chapter 2. Manag. Haz. Wast. 13-37 (2016). Ed. INTECH.

Dvorkin, L.; Lushnikova, N.; Sonebi. M. (2018) Application areas of phosphogypsum in production of mineral binders and composites based on them: a review of research results. MATEC Web of Confe. 149, 01012.

Ngoc Lam, N. (2020) Eco-concrete made with phosphogypsum-based super sulfated cement. IOP Conf. Series: Mater. Scie. and Engi. 869, 032031. IOP Publishing.

IAEA. (2013) Radiation protection and management of NORM residues in the phosphate industry. Safety Reports Series 78.

Kovler, K.; Dashevsky, B.; Kosson, D.S.; Reches, Y. (2017) US Patent. System and methods for removing impurities from phosphogypsum and manufacturing gypsum binder. US 2017/0022070A1.

Trevisi, R.; Risica, S.; D’Alessandro, M.; Paradiso, D.; Nuccetelli. C. (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J. Env. Rad. 105, 11-20.

Sanjuán, M.A.; Suarez-Navarro, J.A.; Argiz, C.; Mora, P. (2019). Assessment of radiation hazards of white and grey Portland cements. J. Radioanal. Nucl. Chem. 322, 1169-1177.

Sanjuán, M.A.; Suárez-Navarro, J.A.; Argiz, C.; Mora, P. (2020) Assessment of natural radioactivity and radiation hazards owing to coal fly ash and natural pozzolan Portland cements. J. Radioanal. Nucl. Chem. 325, 381-390.

Raghu, Y.; Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B. (2018) Assessment of natural radioactivity and radiological hazards in building materials used in the Tiruvannamalai District, Tamilnadu, India, using a statistical approach. J. Taibah Univ. Sci. 11 [4], 523-533.

Allard, B.; Olofsson, U.; Torstenfelt, B. (1984) Environmental actinide chemistry. Inor. Chimi. Acta. 94 [4], 205-221.

Plant, J.A.; Saunders, A.D. (1966) The Radioactive Earth. Radia. Protec. Dosi. 68 [1-2], 25-36.

Sanjuan, M.A.; Argiz, C.; Alonso, M.M.; Suarez-Navarro, J.A.; Gascó, C.; Puertas, F. (2019) Natural radioactivity of Portland cement mortars made with granite sand. 15th International Congress on Chemistry of Cement (Prague).

Croymans, T.; Schroeyers, W.; Krivenko, P.; Kovalchuk, O.; Pasko, A.; Hult, M.; Marissens, G.; Lutter, G.; Schreurs, S. (2017) Radiological characterization and evaluation of high volume bauxite residue alkali activated concretes. J. Env. Rad. 168, 21-29.

Frutos Vázquez, B. (2009) Estudio experimental sobre la efectividad y la viabilidad de distintas soluciones constructivas para reducir la concentración de gas radón en edificaciones. PhD Thesis E.T.S. Arquitectura. Universidad Politécnica de Madrid.



How to Cite

Puertas, F. ., Suárez-Navarro, J. A. ., Alonso, M. M. ., & Gascó, C. . (2021). NORM waste, cements, and concretes. A review. Materiales De Construcción, 71(344), e259.



Research Articles

Funding data

Ministerio de Ciencia e Innovación
Grant numbers BIA2016-77252-R

Most read articles by the same author(s)

1 2 3 4 5 6 > >>