Materiales de Construcción, Vol 57, No 288 (2007)

Alteration of granite stone used in building construction

R. M.ª Esbert Alemany
Área de Petrología y Geoquímica. Universidad de Oviedo, Spain


The article contains a synthesis of the different factors involved in the alteration of granite ashlars or cladding used in building construction. Emphasis is placed on the – primarily fissure-like – anisotropies often present in granite, which are usually related to the structural conditions of the quarry where it is mined. Such anisotropies condition the development of certain types of alterations that appear over time, particularly in ashlars. Stone petrography, particularly as regards the chemical composition of the minerals comprising granite, also govern its alteration. Moreover, the commercial term granite often includes other more alkaline rocks generically known as granitoids, whose alterability is higher than in granite per se. The values of some of the physical properties of these rocks, which must be quantified to evaluate their durability, are shown to differ in keeping with their anisotropy. Finally, the forms, causes and mechanisms involved in granite decay are reviewed in the context of its use in building construction.


granite; alteration; anisotropy; petrography; physical properties

Full Text:



(1) EN 12670:2001: Piedra natural: terminología.

(2) Consejo Superior de Investigaciones Científicas: Actas del workshop: alteración de granitos y rocas afines, empleados como materiales de construcción, 1993, 190 pp.

(3) Chabas, A. y Jeannette, D.: “Weathering of marbles and granites in marine environment: petrophysical properties and special role of atmospheric salts”, Environmental Geology, vol. 30, nº 3 (2001), pp. 359-368.

(4) Bates, R. L.: Geology of the industrial rocks and minerals, Dover Publications Inc. New York, 1969, 459 pp.

(5) Esbert, R. M.; Pérez Ortiz, A; Ordaz, J. y Alonso, F. J.: “Intrinsic factors influencing the decay of the granite as a building stone”, VIIth Intl. Congres. Int. Associations of Engineering Geology (1994), pp. 3659-3665.

(6) Ragland, P. C.: “Basic Analytical Petrology”, Oxford University Press, 1989, 369 pp. Silva, Benita.

(7) Esbert, R. M.; Ordaz, J.; Alonso, F. J., Montoto, M.; Gonzales, T. y Álvarez del Buergo, M.: “Manual de diagnosis y tratamiento de materiales pétreos y cerámicos”, Col.legi d’Aparelladors i Arquitectes Tècnics de Barcelona, 1997, 126 pp.

(8) RILEM 1980: “Essais recommandés pour mesurer l’altération des pierres et evaluation l’eficacité des methods de traitment/Recommended test to measure the deterioration of stone and to assess the effectiveness of treatment methods”, Matériaux et Constructions, Bull. RILEM, 13(75), pp. 216-220.

(9) NORMAL 1981: Assorbimento d’acqua per immersione totale e capacitá d’imbibizione, CNR-IRC, Roma, 5 pp.

(10) NORMAL 1985: Permeabilitá al vapour d’acqua, CNR-ICR, Roma, 6 pp.

(11) ISRM 1979: “Suggested methods for the quantitative description of discontinuities in rock masses”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., vol. 15, Great Britain, pp. 319-368.

(12) ISRM 1981: Rock characterization testing and monitoring ISRM suggested methods. E.T. Brown, Ed., Pergamon Press, Londres, 211 pp.

(13) Valdeón, L.; Montoto, M.; Calleja, L. y Esbert, R. M.: “A method to assess spatial coordinates in art and archaeological objects: Application of tomography to a dolmen”, J. Archaeological Sciences, nº 24 (4) (1997), pp. 337-346.

(14) Ordaz y Esbert: “Glosario de términos relacionados con el deterioro de las piedras de construcción”, Mater. Construcc., vol. 38, nº 209 (1988), pp. 39-45.

(15)Caneva, G.; Nugari, M. P. y Salvadori, O.: “Biology in the conservation of Works of Art”, ICCROM, 1991, 182 pp.

Copyright (c) 2007 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support