Materiales de Construcción, Vol 58, No 289-290 (2008)

Influence of anisotropy on the durability of Madrid-region Cretaceous dolostone exposed to salt crystallization processes


https://doi.org/10.3989/mc.2008.v58.i289-290.74

R. Fort
Instituto de Geología Económica (CSIC-UCM), Madrid,, Spain

B. Fernández-Revuelta
Instituto Geológico y Minero de España, Madrid, Spain

M. J. Varas
Instituto de Geología Económica (CSIC-UCM), Madrid. Facultad de Ciencias Geológicas. Universidad Complutense de Madrid, Spain

M. Alvarez de Buergo
Instituto de Geología Económica (CSIC-UCM), Madrid, Spain

M. Taborda-Duarte
Instituto de Geología Económica (CSIC-UCM), Madrid, Spain

Abstract


The resistance of dolomitic limestone to salt crystallization processes was studied on materials from Redueña and Torrelaguna in the province of Madrid, Spain. Much of the region’s architectural and monumental heritage was built with the materials from these two sites. Stone specimens were selected for testing on the basis of ultrasonic wave propagation velocity (Vp) measurements taken in around one hundred cubic samples of each variety. The anisotropy indices were calculated and the samples were clustered on the basis of the results. Two representative samples of each class were taken and characterized for their petrographic and petrophysical properties before and after exposure to salt crystallization cycles. Ageing was evaluated in terms of weight loss and the visual deterioration observed. The degeneration pattern found varied substantially in the two materials: the Requena material exhibited more intense deterioration, with scaling and spalling, while the Torrelaguna dolostone tended to generate fragmentation and rounding at corners and edges.
The anisotropy of these stones does not appear to clearly govern salt crystallization-mediated deterioration. Although no clear relationship could be established between the intensity of deterioration and the initial anisotropy indices, total anisotropy was observed to increase as a general rule, and normally more than the relative anisotropy index. No specific anisotropic group was found to undergo greater variation than any other.

Keywords


dolomitic limestone; ultrasound; anisotropy indices; salt crystallization; deterioration; natural stone

Full Text:


PDF

References


[1] L.M.O. Sousa, L.M. Suarez del Río, L. Calleja, V.G. Ruiz de Argandoña, A. Rodríguez Rey: “Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites”. Eng Geol, 77 (2005), 153–168. doi:10.1016/j.enggeo.2004.10.001

[2] J. Ruedrich, S. Siegesmund: “Salt and ice crystallisation in porous sandstones”. Environ Geol, Vol. 52 (2007), 225–249. doi:10.1007/s00254-006-0585-6

[3] R. Prikryl: “Some microstructural aspects of strength variation in rocks”. Int J Rock Mech & Min Scien, Vol. 38 (2001) 671–682.

[4] M. Alvarez de Buergo, T. González: “Estudio del método de la medida de la velocidad de propagación del sonido y su aplicación a edificios históricos”. Ingeniería Civil, Vol. 94 (1994), 69-74.

[5] O. Cazalla, E. Sebastián, G. Cultrone, M. Nechar, M.G. Bagur: “Three-way ANOVA interaction analysis and ultrasonic testing to evaluate air lime mortars used in cultural heritage conservation projects”. Cem Concr Res, Vol. 29 (1999), 1749-1752. doi:10.1016/S0008-8846(99)00158-1

[6] E. Dapena, S. Ordóñez, M.A García del Cura: “Estudio de las rocas calizas utilizadas durante los siglos XVIII Y XIX en la construcción de los palacios de Madrid”. Ingeniería Civil, Vol. 71 (1989), 67-77.

[7] U. Zezza, Physical-mechanical properties of quarry and building stones, In: Advanced Workshop: Analytical Methodologies for the Investigation of Damaged Stone, F. Veniale, U. Zezza (Eds.), Pavia University, Pavia, Italy, 1990.

[8] R. Fort, F. Mingarro, M.C. Lopez de Azcona: “Petrología de los materiales de construcción del Palacio Real de Madrid”. Geogaceta, Vol. 20, nº 5 (1996), 1236-1239.

[9] R. Fort, A. Bernabeu, M.A. García del Cura, M.C. López de Azcona, S. Ordóñez, F. Mingarro: “Novelda stone: widely used within the Spanish architectural heritage”. Mater Construcc, Vol. 52, nº 266 (2002), 19-32.

[10] R. Prikryl, T. Lokajícekb, Z. Prosa, K. Klímab: “Fabric symmetry of low anisotropic rocks inferred from ultrasonic sounding: Implications for the geomechanical models”. Tectonophysics, Vol. 431, nº 1-4 (2007), 83-96. doi:10.1016/j.tecto.2006.05.031

[11] L.M. del Río, F. Lopez, F.J. Esteban, J.J Tejado, M.I. Mota, I. Gonzalez: J.L. San Emeterio, A. Ramos: “Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain)”. Ultrasonics, Vol. 44, Supplement 1 (2006), e1057-e1061. doi:10.1016/j.ultras.2006.05.098

[12] T. Weiss, S. Siegesmund, P. Rosolofosaon. The relationship between deterioration, fabric, velocity and porosity constraint. In: 9th International Congress on deterioration and conservation of stone, Fassina V, (ed.), Vol. 1, 215-223 (2000). Elsevier.

[13] R. Fort, J. Rodríguez. Prospección ultrasónica para determinar el deterioro de la Estela de Barros (Cantabria), III Congreso Nacional de Arqueometría (2003), 51-57, ISBN: 84-472-0552-5

[14] V.G. Ruiz de Argandoña, L. Calleja, L.M. Suárez del Río, A. Rodríguez-Rey, C. Velorio: “Durabilidad en ambientes húmedos de la Arenisca de la Marina (Formación Lastres, Jurásico Superior de Asturias)”. Trabajos de Geología, Universidad de Oviedo, Vol. 25 (2005), 105-115.

[15] H. Yavuz, R. Altindag, S. Sarac, I. Ugur, N. Sengun: “Estimating the index properties of deteriorated carbonate rocks due to freeze–thaw and thermal shock weathering”. Int J Rock Mech & Min Ssci, Vol. 43 (2006), 767–775.

[16] E. Sebastian, M.J. de la Torre, O. Cazalla, G. Cultrone, C. Rodriguez-Navarro: “Evaluation of treatments on biocalcarenites with ultrasound”. The e-Journal of non-destructive testing, Vol. 4, nº 12 (1999).

[17] M. Myrin, K. Malaga. A case study on the evaluation of consolidation treatments of Gotland sandstone by use of ultrasound pulse velocity measurements. In: Heritage, Weathering and Conservation. Ed. R. Fort, M. Alvarez de Buergo, M. Gomez-Heras, C. Vazquez-Calvo, Taylor & Francis Group, London, 2006, 749-755.

[18] R. Dreesen, M. Dusar: “Historical building stones in the province of Limburg (NE Belgium): role of petrography in provenance and durability assessment”. Mater Charact, Vol. 53, nº 2-4 (2004), 273-287. doi:10.1016/j.matchar.2004.07.001

[19] M. Gomez-Heras, R. Fort: “Location of quarries of non traditional stony materials in the architecture of Madrid: the Crypt of Catedral of Santa María la Real de la Almudena”. Mater Construcc, Vol. 54, nº 274 (2004), 33-48.

[20] E. Galán, M.I. Carretero, E. Mayoral: “A methodology for locating the original quarries used for constructing historical buildings: application to Málaga Cathedral, Spain”. Eng Geol, Vol. 54 (1999), 287–298. doi:10.1016/S0013-7952(99)00042-3

[21] F. Birch: “The velocity of compressional waves in rocks to 10 kilobars, part 2”. J Geophys Res, Vol. 66 (1961), 2199–2224. doi:10.1029/JZ066i007p02199

[22] J. Guydader, A. Denis: “Propagation des ondes dans les roches anisotropes sous contrainte évaluation de la qualité des schistes ardoisiers”. Bull Eng Geo, Vol. 33 (1986), 49–55. doi:10.1007/BF02594705

[23] F. Sheremeti-Kabashi, R. Snethlage. Determination of structural anisotropy of Carrara Marble with ultrasonic measurements. In: 9th International Congress on Deterioration and Conservation of stone, V. Fassina V (ed.), Vol. 1 (2000), 247-253, Elsevier.

[24] R. Fort, M.J. Varas, E.M. Pérez-Monserrat, J. Luque, M. Alvarez de Buergo, C. Vazquez-Calvo: “Los ladrillos del recinto amurallado de Talamanca de Jarama, Madrid: criterios para su diferenciación”. Bol Soc Esp Ceram V, Vol. 46 (2007), 145-152.

[25] J.H. Schön. Physical properties of rocks. Fundamentals and principles of petrophysics. Tarrytown, New York, Pergamon Press, 583 p. 1996

[26] C.W. Correns: “Growth and dissolution of crystals under linear pressure”. Disc Faraday Soc, Vol. 5 (1949): 267-271. doi:10.1039/df9490500267

[27] A. Arnold & K. Zehnder: Salt Weathering on monuments. In Conservation of Monuments in the Mediterranean Basin, F. Zezza, ed. Grafo, Brescia, 31-58. 1990.

[28] C.A. Price. Stone Conservation: An Overview of Current Research. The Getty Conservation Institute, Sta. Monica, 2006, 88 p.

[29] A. Goudie, H. Viles. Salt Weathering Hazards. p. 235, Wiley, Chichester, 1997.

[30] D. Benavente, M.A. García del Cura, R. Fort, S. Ordóñez: “Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone”. J Cryst Growth, Vol. 204 (1999), 168-178. doi:10.1016/S0022-0248(99)00163-3

[31] C. Rodriguez-Navarro, E. Dohene: “Salt weathering: influence of evaporation rate, supersaturation and crystallisation pattern”. Earth Surf Proc Land, Vol. 24 (1999), 191-209. doi:10.1002/(SICI)1096-9837(199903)24:3<191::AID-ESP942>3.0.CO;2-G

[32] G.W. Scherer: “Crystallisation in pores”. Cem Concr Res, Vol. 29 (1999), 1347-1358. doi:10.1016/S0008-8846(99)00002-2

[33] M. Gomez-Heras, D. Benavente, M. Alvarez de Buergo, R. Fort. “Soluble salt minerals from pigeon droppings as potential contributors to the decay of stone based Cultural Heritage”. Eur J Mineral, Vol. 16 (2004), 505-509. doi:10.1127/0935-1221/2004/0016-0505

[34] M. Gomez-Heras, R. Fort: “Patterns of halite (NaCl) crystallisation in building stone conditioned by laboratory heating regimes”. Environ Geol, Vol. 52 (2007): 239-247. doi:10.1007/s00254-006-0538-0

[35] UNE-EN 12370:1999, Métodos de ensayo para piedra natural. Determinación de resistencia a la cristalización de sales/ Natural stone test methods - Determination of resistance to salt crystallisation, AENOR.

[36] RILEM: “Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods”. Mater et Const, Vol. 13 (1980), 175-253.

[37] F.J. Alonso, J. Ordaz, L. Valdeón, R. Esbert: “Revisión crítica del ensayo de cristalización de sales”. Mater Construcc, Vol. 206 (1987), pp. 53-60.

[38] D. Benavente, M.A. García del Cura, A. Bernabeu, S. Ordóñez: “Quantification of salt weathering in porous stones using an experimental continuous partial immersion method”. Eng Geol, Vol. 59 (2001), 313-325. doi:10.1016/S0013-7952(01)00020-5

[39] N. Tsui, R.J. Flatt, G.W. Scherer: “Crystallization damage by sodium sulfate”. J Cult Herit, Vol. 4 (2003), 109–115. doi:10.1016/S1296-2074(03)00022-0

[40] B.K. Mohammad: “The salt durability of some Jordanian limestones as a function of their petrophysical properties”. The Electronic Journal of Geotechnical Engineering, Vol. 8 (2003) http://www.ejge.com/2003/Ppr0312/Ppr0312.htm

[41] M. Angeli, J.P. Bigas, D. Benavente, B. Menendez, R. Hebert, C. David: ”Salt crystallization in pores: quantification and estimation of damage”. Environ Geol, Vol. 52 (2007), 205–213. doi:10.1007/s00254-006-0474-z

[42] J. Menduiña, R. Fort, García del Cura, M.A., Galán, L., Pérez-Soba, C., Perez-Monserrat, E.M., Fernández-Revuelta, B., Bernabéu, A.; Varas, M.J. (Coords). Las piedras utilizadas en la construcción de los bienes de interés cultural de la Comunidad de Madrid anteriores al siglo XIX, Instituto Geológico y Minero de España. 2005. 131 p.

[43] B.D. Evamy: “The application of a chemical staining technique to a study of dedolomitisation”. Sedimentology, Vol. 2 (1963), 164-170. doi:10.1111/j.1365-3091.1963.tb01210.x

[44] UNE-EN 14579:2005, Métodos de ensayo para piedra natural, Determinación de la velocidad de propagación de los ultrasonidos/ Natural stone test methods - Determination of sound speed propagation, AENOR

[45] S.S. Khan, A. Ahmad: “Cluster center initialization algorithm for k-means clustering”. Pattern Recogn Lett, Vol. 25 (2004), 1293-1302. doi:10.1016/j.patrec.2004.04.007

[46] UNE-EN 1936:1990, Métodos de ensayo para piedra natural, Determinación de la densidad real, aparente, la porosidad abierta y total/ Natural stone test methods. Determination of real density and apparent density and of total and open porosity, AENOR

[47] UNE-EN 13755:2004, Métodos de ensayo para piedra natural, Determinación del coeficiente de absorción de agua por presión atmosférica/ Natural stone test methods. Determination of water absorption at atmospheric pressure, AENOR.

[48] S. Ordóñez, R. Fort, M.A. García del Cura: “Pore size distribution and the durability of a porous limestone”. Q J Engin Geol, Vol. 30, nº3 (1997), 221-230.




Copyright (c) 2008 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es