Materiales de Construcción, Vol 56, No 281 (2006)

Alkali activated fly ash binders. A comparative study between sodium and potassium activators


https://doi.org/10.3989/mc.2006.v56.i281.92

A. Fernández-Jiménez
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC). Madrid, Spain

A. Palomo
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC). Madrid, Spain

M. Criado
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC). Madrid, Spain

Abstract


This paper shows the effect of the nature of some alkaline activators in the microstructural development of thermal-alkali activated f/y ash systems. The alkaline compounds employed in this investigation were: NaOH, KOH, Na2C03, K2C03, sodium silicate and potassium silicate. Results confirm that the main reaction product of the activation process (throughout the studied systems) is the amorphous alkaline aluminosilicate gel with a three-dimensional structure already observed in earlier research. It has been proved that the type of anion and cation involved in the activation reaction of the ashes not only affects the microstructural development of the systems but the Si/Al ratio of that prezeolitic gel too. For example, in the presence of soluble silicate ions the content of Si in the final structure is notably increased (Si/Al =2.7-3.0), however carbonate ions play a different role since the formation of Sodium or Potassium carbonate/bicarbonate acidifies the system and consequently the reaction rate is considerably slowed. Finally it is evident that; when all experimental conditions are equal, sodium has a greater capacity than potassium to accelerate the setting and hardening reactions of fly ash and also to stimulate the growth of certain zeolitic crystals (reaction by-products). In general it can be affirmed that OH- ion acts as a reaction catalyst; and the alkaline metal (M+) acts as a structure-forming element.

Keywords


fly ash; alkali activation; sodium; potassium; binding materials

Full Text:


PDF

References


(1) A. Palomo, M-W. Grutzeck, M. T. Blanco, «Alkali-activated fly ashes a cement for the future», Cem. Concr: Res., Vol. 29 (1999), pp. 1323-1329. doi:10.1016/S0008-8846(98)00243-9

(2) A. Fernández-Jiménez, A. Palomo, «Alkali-activated fly ashes: properties and characteristics». 11th International Congress on the Chemistry of Cement (Durban, South Africa), Vol. 3 (2003), pp. 1332-1340.

(3) V. D. Glukhovskiy, 50il silicates. Gosstroy publsh, Kiev, 1959. (In Russian.)

(4) J. G. S. van Jaarsveld, J. S. J. van Deventer, G. C. Lukey, «The effect of composition and temperature on the properties of fly ash and kaolinite-based geopolymers», Chemical Engineering Journal, Vol. 89 (2002), pp. 63-73. doi:10.1016/S1385-8947(02)00025-6

(5) P. V. Krivenko, «Alkaline Cements». Proceed. First Intern. Conf. Alkaline cements and Concretes, Kiev, Vipol publish (1994), pp. 11-129.

(6) D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, B. V. Rangan, «Brief Review of Development of geopolymer Concrete». 8th CANMET/ACI International Conference on fly ash, silica fume, slag and natural pozzolans in concrete. Las Vegas (USA), 2004.

(7) A. Palomo, A. Fernández-Jiménez, C. López-Hombrados, J. L. L1eyda, «Precast elements made of alkali-activated f1y ash concrete». 8th CANMET/ACI International Conference on fly ash, silica fume, slag and natural pozzolans in concrete, Las Vegas (USA), Supplementary Volume (2004), pp. 545-558.

(8) A. Palomo, P. F. G. Banfill, A. Fernández-Jiménez, D. S. Swift, «Properties of alkali activated f1y ashes determined from rheological measurements», Adv. Cem. Res. Vol. 17 (2005), pp. 143-151. doi:10.1680/adcr.2005.17.4.143

(9) A. Fernández-Jiménez, A. Palomo, C. López-Hombrados, «Engineering properties of alkali activated fly ash concrete», ACIMat Journal (in press, 2006).

(10) A. Palomo, S. Alonso, A. Fernández-Jiménez, 1. Sobrados J. Sanz, «Alkaline activation of fly ashes. A 29Si NMR study of the reaction products», 1. Am. Ceramic. 5oc./ 87 (6) (2004), pp. 1141-1145.

(11) A. Fernández-Jiménez, A. Palomo, «Alkali activated fly ashes. Structural studies through Mid-Infrared Spectroscopy», Microporous & Mesoporous Mat., 86 (2005), pp. 207-214. doi:10.1016/j.micromeso.2005.05.057

(12) A. Palomo, A. Fernández-Jiménez, «Microstural development of alkali-activated f1y ash cemento A descriptive model», Cem. Concr Res./ 35 (2005), pp. 1204-1209. doi:10.1016/j.cemconres.2004.08.021

(13) A. Palomo, A. Fernández-Jiménez, M. Criado, «Geopolymers: same basic chemistry, different microstructures», Mater: Construcc./ Vol. 54 (2004), pp. 77-91.

(14) A. Fernández-Jiménez, A. Palomo, «Microstructure of alkali activated fly ash mortars: effect of the activator», Cem. Concr: Res./ 35 (2005), pp. 1984-2054. doi:10.1016/j.cemconres.2005.03.003

(15) A. Fernández-Jiménez, A. Palomo, «Characterisation of fly ashes. Potential reactivity as alkaline cements», Fue/./ 82(2003), pp. 2259-2265. doi:10.1016/S0016-2361(03)00194-7

(16) M. Criado, Inmovilización de residuos tóxicos en matrices de cenizas volantes activadas alcalinamente. Tesis doctoral, Universidad Autónoma de Madrid (España) (in progress).

(17) M. Criado, A. Palomo, A. Fernández-Jiménez, «Alkali activation of fly ashes. Effect of curing conditions on the nature of the reaction products», Fuel. 84 (2005), pp. 2048-2054. doi:10.1016/j.fuel.2005.03.030

(18) Norihio Murayama, Hideki Yamamoto, Junji Shibata, «Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction», Int 1. Miner: Process, Vol. 64 (2002), pp. 1-17. doi:10.1016/S0301-7516(01)00046-1

(19) C. Yip Ka-Bik, The role of calcium in geopolymerisation. Doctoral thesis, University of Melbourne (Australia)

(20) X. Querol, N. Moreno, J. C. Umaña, A. Alastuey, E. Hernández, A. López-Soler, F. Plana, «Sintesis of zeolites from coal fly ash: on overview», Inter: National J. of Coal Geology, 50 (2002), pp. 413-423. doi:10.1016/S0166-5162(02)00124-6

(21) M. Grutzeck, K. Atephen, M. DiCola, «Zeolite formation in alkali-activated cementitious systems», Cem. Concr: Res., Vol. 34, nº 6 (2004), pp. 949-955. doi:10.1016/j.cemconres.2003.11.003

(22) R. Aiello, C. Collela, R. Sersale, «Molecular sieves; Advances in chemistry series 101», Am. Che. Soc. Washington D. C. (1971), p. 102.

(23) E. M. Flanigen, «Molecular sieves; Advances in chemistry series», Am. Che. Soc./ 121, Washington D. C. (1973), p. 119.

(24) P. V. Krivenko, «Alkali cements». First International Conferencé of Alkaline Cements and Concretes, Ukraine, Kiev (1994), pp. 12-129.

(25) J. S. J. van Deventer, Hua Xu, «The geopolymerisation of alumino-silicate minerals». Int J. Miner: Process, 59 (2000), pp. 247-266.

(26) A Buchwald, Ch. Kaps, M. Hohman, «Alkali-activated binder and pozzolan cement binder-compete binder reaction or Two sides of the same story». Proceedings of the 11th International Congress on the Chemistry of Cement (ICCC), Durban, South Africa (2003), pp. 1238-1246.

(27) Man Park, Choong Lyeal Choi, Woo Taik Lim, Myung Chul Kim, Jyung Choi and Nam Ho Heo, «Molten-salt method for the synthesis of zeolite molten-salt system», Microporous and Mesoporous Materials, Vol. 37 (2000), pp. 81-89.

(28) D. W. Breck, Zeolite Molecular Sieves, Ed. Malabar (Florida), Robert E. Krieger Publishing Company, 1984. ISBN 0-89874-648-5.




Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es