Durability of reinforced concrete exposed to aggressive conditions

Authors

  • A. M. Aguirre Universidad del Valle
  • R. Mejía de Gutiérrez Universidad del Valle

DOI:

https://doi.org/10.3989/mc.2013.00313

Keywords:

reinforced concrete, steel corrosion, mineral additions, electrochemical rehabilitation

Abstract


Reinforced concrete is the most widely used construction material in the world. The combination of high compressive strength, afforded by concrete and, and the excellent mechanical properties that characterise steel make it an ideal composite for all manner of structures. One of the main weaknesses of this material, however, is that when the concrete is exposed to aggressive environments, in particular high concentrations of chloride ions or carbon dioxide, reinforcing steel corrodes, shortening service life. This article reviews the state of the art on concrete durability, along with the conditions that affect its useful life by inducing reinforcing steel corrosion. It also discusses the prevention and control methods, in particular electrochemical prevention and rehabilitation techniques, that have been developed to mitigate the problem.

Downloads

Download data is not yet available.

References

(1) Fajardo, G.; Váldez, P.; Pacheco, J.: "Corrosion of steel rebar embedded in natural pozzolan based mortars exposed to chlorides", Constr. Build. Mater., vol. 23, no 2 (2009), pp. 768-74. http://dx.doi.org/10.1016/j.conbuildmat.2008.02.023

(2) Shi, X.; Xie, N.; Fortune, K.; Gong, J.: "Durability of steel reinforced concrete in chloride environments: An overview", Constr. Build. Mater., vol. 30, no 0 (2012), pp. 125-38. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.038

(3) Mejía, R.; Rodríguez, P.: Durabilidad y Corrosión en Materiales Cementicios, CYTED, Costa Rica (1999).

(4) Neville, A.: "Consideration of durability of concrete structures: Past, present, and future", Mat. Struct., vol. 34, no 2 (2001), pp. 114-8.

(5) Ahmad, S.: "Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review", Cem. Concr. Comp., vol. 25, no 4-5 (2003), pp. 459-71. http://dx.doi.org/10.1016/S0958-9465(02)00086-0

(6) Mehta, P. K.; Monteiro, P. J. M.: Concrete Microstructure, Properties, and Materials, McGraw Hill, New York (2006).

(7) Bertolini, L.; Elsener, B.; Pedeferri, P.; Polder, R.: Corrosion of Steel in Concrete, WILEY-VCH Verlag GmbH & Co, Weinheim (2004).

(8) Tanesi, J.; Meininger, R.: "Freeze-Thaw Resistance of Concrete with marginal air content", Research, Development, and Technology Federal Highway Administration, vol. no 0 (2006), pp. 1-78.

(9) EN206-1 "Hormigón - Parte 1: Especificación, comportamiento, fabricación y conformidad". CEN (2000).

(10) ASTM-C666/C666M-03 "Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing". ASTM Standards (2008).

(11) ACI-201.2R-01 "Guide to Durable Concrete". Committee 201 (2001).

(12) Hossain, K. M. A.; Lachemi, M.: "Performance of volcanic ash and pumice based blended cement concrete in mixed sulfate environment", Cem. Concr. Res., vol. 36, no 6 (2006), pp. 1123-33. http://dx.doi.org/10.1016/j.cemconres.2006.03.010

(13) Sanjuán, M. A.; Argiz, C.: "La nueva norma europea de especificaciones de cementos comunes UNE-EN 197-1:2011", Mater. Construcc., vol. 62, no 307 (2012), pp. 425-30. http://dx.doi.org/10.3989/mc.2012.07711

(14) Márquez, G.; Alejandre, F. J.; Martín-del-Río, J. J.; Arribas, R.; Blasco, F. J.: "Ataque del anhi’drido carbo’nico y el ácido sulfhi’drico sobre pastas de cemento API clase H expuestas a aguas de formacio’n salina", Mater. Construcc., vol. 61, no 303 (2011), pp. 371-84. http://dx.doi.org/10.3989/mc.2010.54509

(15) Sideris, K. K.; Savva, A. E.; Papayianni, J.: "Sulfate resistance and carbonation of plain and blended cements", Cem. Concr. Comp., vol. 28, no 1 (2006), pp. 47-56. http://dx.doi.org/10.1016/j.cemconcomp.2005.09.001

(16) Rodríguez-Camacho, R. E.; Uribe-Afif, R.: "Importance of using the natural pozzolans on concrete durability", Cem. Concr. Res., vol. 32, no 12 (2002), pp. 1851-8. http://dx.doi.org/10.1016/S0008-8846(01)00714-1

(17) Karakurt, C.; Topçu, . B.: "Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete", Constr. Build. Mater., vol. 25, no 4 (2011), pp. 1789-95. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.087

(18) Al-Akhras, N. M.: "Durability of metakaolin concrete to sulfate attack", Cem. Concr. Res., vol. 36, no 9 (2006), pp. 1727-34. http://dx.doi.org/10.1016/j.cemconres.2006.03.026

(19) Najimi, M.; Sobhani, J.; Pourkhorshidi, A. R.: "Durability of copper slag contained concrete exposed to sulfate attack", Constr. Build. Mater., vol. 25, no 4 (2011), pp. 1895-905. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.067

(20) Irassar, E. F.; Sota, J. D.; Batic, O. R.: "Evaluación de la resistencia a los sulfates de cemento con ceniza volante (utilizando el método de Koch & Steinegger)", Mater. Construcc., vol. 38, no 212 (1988), pp. 21-35. http://dx.doi.org/10.3989/mc.1988.v38.i212.822

(21) ASTM-C1012/C1012M "Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution". ASTM Standars (2012).

(22) ASTM-C1157/C1157M "Standard Performance Specification for Hydraulic Cement". ASTM Standars (2011).

(23) Sims, I.; Brown, B. 16 - Concrete Aggregates, Lea's Chemistry of Cement and Concrete (Fourth Edition), Butterworth-Heinemann, Oxford, pp. 907-1015 (2003). http://dx.doi.org/10.1016/B978-075066256-7/50028-X

(24) Olague, C.; Wenglas, G.; Castro, P.: "Influencia de los álcalis provenientes de fuentes distintas al cemento en la evolución de la reacción álcali-sílice", Mater. Construcc., vol. 53, no 271-272 (2003), pp. 189-98. http://dx.doi.org/10.3989/mc.2003.v53.i271-272.303

(25) Lindgård, J.; Andiç-Çakır, Ö.; Fernandes, I.; Rønning, T. F.; Thomas, M. D. A.: "Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing", Cem. Concr. Res., vol. 42, no 2 (2012), pp. 223-43. http://dx.doi.org/10.1016/j.cemconres.2011.10.004

(26) ASTM-C295/C295M "Standard Guide for Petrographic Examination of Aggregates for Concrete". ASTM Standars (2012).

(27) Sims, I.; Nixon, P.: "RILEM recommended test method AAR-1: Detection of potential alkali-reactivity of aggregates-Petrographic method", Mat Struct, vol. 36, no 7 (2003), pp. 480-96. http://dx.doi.org/10.1007/BF02481528

(28) ASTM-C289 "Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method)". ASTM Standars (2007).

(29) Foradada, J. S.: Envejecimiento de presas por reacciones expansivas en hormigón, Universitat Politècnica de Catalunya, Barcelona (2005).

(30) ASTM-C1293-08b "Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction". ASTM Standards (2008).

(31) ASTM-C227 "Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method)". ASTM Standards (2010).

(32) Moreno, A. d. V.; López, T. P.; Madrid, M. M.: "El fenómeno de la corrosión en estructuras de concreto reforzado ", Instituto Mexicano del Transporte, vol. 182, no (2001), pp. 1-73.

(33) Américo, P. O.; Nepomuceno, A. A.: "Influencia del contenido en cemento en la corrosión de la armadura en morteros carbonatados", Mater. Construcc., vol. 53, no 271-272 (2003).

(34) López, W.; Feliu, S.; J. González, J.; Andrade, M. C.: "La importancia del curado en el comportamiento posterior frente a la corrosión de las estructuras de hormigón armado", Mater. Construcc., vol. 41, no 223 (1991), pp. 5-17. http://dx.doi.org/10.3989/mc.1991.v41.i223.735

(35) El-Reedy, M. A.: Steel-Reinforced Concrete Structures, CRC Press Taylor & Francis Group, Boca Raton (2008).

(36) Song, G.; Shayan, A.: "Corrosion of steel in concrete: causes, detection and prediction state-of-the-art Review", ARRB Tranport Research Ltd Australia, vol. 4, no (1998), pp. 1-77.

(37) Nasser, A.; Clément, A.; Laurens, S.; Castel, A.: "Influence of steel–concrete interface condition on galvanic corrosion currents in carbonated concrete", Corrosion Science, vol. 52, no 9 (2010), pp. 2878-90. http://dx.doi.org/10.1016/j.corsci.2010.04.037

(38) Alexander, M. G.; Mackechnie, J. R.; Yam, W.: "Carbonation of concrete bridge structures in three South African localities", Cem. Concr. Comp., vol. 29, no 10 (2007), pp. 750-9. http://dx.doi.org/10.1016/j.cemconcomp.2007.06.005

(39) Carmona, T. G.: Modelos de previsão da despassivação das armaduras em estruturas de concreto sujeitas à carbonatação, Universidade de São Paulo, São Paulo (2005).

(40) Otieno, M.; Alexander, M.; Beushausen, H.: "Transport mechanisms in concrete. Corrosion of steel in concrete (initiation, propagation & factors affecting)". University of Cape Town (2010).

(41) Castro, P.; Sanjuán, M. A.; Genescá, J.: "Carbonation of concretes in the Mexican Gulf", Build. Environ., vol. 35, no 2 (2000), pp. 145-9. http://dx.doi.org/10.1016/S0360-1323(99)00009-8

(42) Alonso, C.; Andrade, C.: "Efecto que el tipo de cemento y la dosificación del mortero ejercen en la velocidad de corrosión de armaduras embebidas en mortero carbonatado", Mater. Construcc., vol. 37, no 205 (1987), pp. 5-15. http://dx.doi.org/10.3989/mc.1987.v37.i205.874

(43) Moreno, E. I.; Domínguez, G. G.; Sarabia, E. J. C.; Duarte, F.: "Efecto de la relación agua/cemento en la velocidad de carbonatación del concreto utilizando una cámara de aceleración", Ingeniería, vol. 8, no 2 (2004), pp. 117-30.

(44) Sisomphon, K.; Franke, L.: "Carbonation rates of concretes containing high volume of pozzolanic materials", Cem. Concr. Res., vol. 37, no 12 (2007), pp. 1647-53. http://dx.doi.org/10.1016/j.cemconres.2007.08.014

(45) UNE.112011 "Corrosión en armaduras. Determinación de la profundidad de carbonatación en hormigones endurecidos y puestos en servicio.". AENOR (1994).

(46) CCAA "Chloride Resistance of Concrete". Cem. Concr. Aggr. Australia (2009).

(47) Song, H.-W.; Lee, C.-H.; Ann, K. Y.: "Factors influencing chloride transport in concrete structures exposed to marine environments", Cem. Concr. Comp., vol. 30, no 2 (2008), pp. 113-21. http://dx.doi.org/10.1016/j.cemconcomp.2007.09.005

(48) Princigallo, A.: "Cálculo del transporte de cloruros en la pasta de cemento", Mater. Construcc., vol. 62, no 306 (2012), pp. 151-161. http://dx.doi.org/10.3989/mc.2012.02011

(49) Angst, U.; Elsener, B.; Larsen, C. K.; Vennesland, Ø.: "Critical chloride content in reinforced concrete-A review", Cem. Concr. Res., vol. 39, no 12 (2009), pp. 1122-38. http://dx.doi.org/10.1016/j.cemconres.2009.08.006

(50) Díaz-Benito, B.; Velasco, F.; Guzmán, S.; Calabrés, R.: "Estudio mediante AFM de la corrosión de aceros en disoluciones de fase acuosa del hormigón", Mater. Construcc., vol. 61, no 301 (2011), pp. 27-37. http://dx.doi.org/10.3989/mc.2010.59410

(51) Gu.neyisi, E.; Özturan, T.; Gesogˇlu, M.: "Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements", Build. Environ., vol. 42, no 7 (2007), pp. 2676-85. http://dx.doi.org/10.1016/j.buildenv.2006.07.008

(52) ASTM-C1202 "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration". ASTM Standards (2010).

(53) Al-Amoudi, O. S. B.; Maslehuddin, M.; Lashari, A. N.; Almusallam, A. A.: "Effectiveness of corrosion inhibitors in contaminated concrete", Cem. Concr. Comp., vol. 25, no 4–5 (2003), pp. 439-49. http://dx.doi.org/10.1016/S0958-9465(02)00084-7

(54) Söylev, T. A.; Richardson, M. G.: "Corrosion inhibitors for steel in concrete: State-of-the-art report", Constr. Build. Mater., vol. 22, no 4 (2008), pp. 609-22. http://dx.doi.org/10.1016/j.conbuildmat.2006.10.013

(55) Selvaraj, R.; Selvaraj, M.; Iyer, S. V. K.: "Studies on the evaluation of the performance of organic coatings used for the prevention of corrosion of steel rebars in concrete structures", Progress in Organic Coatings, vol. 64, no 4 (2009), pp. 454-9. http://dx.doi.org/10.1016/j.porgcoat.2008.08.005

(56) Jalili, M. M.; Moradian, S.; Hosseinpour, D.: "The use of inorganic conversion coatings to enhance the corrosion resistance of reinforcement and the bond strength at the rebar/concrete", Constr. Build. Mater., vol. 23, no 1 (2009), pp. 233-8. http://dx.doi.org/10.1016/j.conbuildmat.2007.12.011

(57) Kepler, J. L.; Darwin, D.; Locke, C. E. "Evaluation of corrosion protection methods for reinforced concrete highway structures". University of Kansas Center for Research (2000).

(58) Batis, G.; Pantazopoulou, P. "Advantages of the simultaneous use of corrosion inhibitors and inorganic coatings". Cement and Concrete Technology in the 2000s Second International Symposium (2000).

(59) Moon, H. Y.; Shin, D. G.; Choi, D. S.: "Evaluation of the durability of mortar and concrete applied with inorganic coating material and surface treatment system", Constr. Build. Mater., vol. 21, no 2 (2007), pp. 362-9. http://dx.doi.org/10.1016/j.conbuildmat.2005.08.012

(60) Zhang, Z.; Yao, X.; Zhu, H.: "Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties", Applied Clay Science, vol. 49, no 1–2 (2010), pp. 1-6. http://dx.doi.org/10.1016/j.clay.2010.01.014

(61) Song, H.-W.; Pack, S.-W.; Nam, S.-H.; Jang, J.-C.; Saraswathy, V.: "Estimation of the permeability of silica fume cement concrete", Constr. Build. Mater., vol. 24, no 3 (2010), pp. 315-21. http://dx.doi.org/10.1016/j.conbuildmat.2009.08.033

(62) Khan, M. I.; Siddique, R.: "Utilization of silica fume in concrete: Review of durability properties", Resources, Conservation and Recycling, vol. 57, no 0 (2011), pp. 30-5. http://dx.doi.org/10.1016/j.resconrec.2011.09.016

(63) Shekarchi, M.; Rafiee, A.; Layssi, H.: "Long-term chloride diffusion in silica fume concrete in harsh marine climates", Cem. Concr. Comp., vol. 31, no 10 (2009), pp. 769-75. http://dx.doi.org/10.1016/j.cemconcomp.2009.08.005

(64) Thomas, M. D. A.; Hooton, R. D.; Scott, A.; Zibara, H.: "The effect of supplementary cementitious materials on chloride binding in hardened cement paste", Cem. Concr. Res., vol. 42, no 1 (2012), pp. 1-7. http://dx.doi.org/10.1016/j.cemconres.2011.01.001

(65) Kulakowski, M. P.; Pereira, F. M.; Molin, D. C. C. D.: "Carbonation-induced reinforcement corrosion in silica fume concrete", Constr. Build. Mater., vol. 23, no 3 (2009), pp. 1189-95. http://dx.doi.org/10.1016/j.conbuildmat.2008.08.005

(66) ASTM-C1240 "Standard Specification for Silica Fume Used in Cementitious Mixtures". ASTM Standards (2012).

(67) Osborne, G. J.: "Durability of Portland blast-furnace slag cement concrete", Cem. Concr. Comp., vol. 21, no 1 (1999), pp. 11-21. http://dx.doi.org/10.1016/S0958-9465(98)00032-8

(68) Song, H.-W.; Saraswathy, V.: "Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blastfurnace slag-An overview", Journal of Hazardous Materials, vol. 138, no 2 (2006), pp. 226-33. http://dx.doi.org/10.1016/j.jhazmat.2006.07.022 PMid:16930831

(69) Topçu, . B.; Bo.a, A. R.: "Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete", Materials & Design, vol. 31, no 7 (2010), pp. 3358-65. http://dx.doi.org/10.1016/j.matdes.2010.01.057

(70) Chen, H.-J.; Huang, S.-S.; Tang, C.-W.; Malek, M. A.; Ean, L.-W.: "Effect of curing environments on strength, porosity and chloride ingress resistance of blast furnace slag cement concretes: A construction site study", Constr. Build. Mater., vol. 35, no 0 (2012), pp. 1063-70. http://dx.doi.org/10.1016/j.conbuildmat.2012.06.052

(71) Thomas, M. D. A.; Scott, A.; Bremner, T.; Bilodeau, A.; Day, D.: "Performance of Slag Concrete in Marine Environment", ACI Materials Journal, vol. 105, no 6 (2008), pp. 628-34.

(72) Yi.iter, H.; Yazıcı, H.; Aydın, S.: "Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete", Build. Environ., vol. 42, no 4 (2007), pp. 1770-6. http://dx.doi.org/10.1016/j.buildenv.2006.01.008

(73) Luo, R.; Cai, Y.; Wang, C.; Huang, X.: "Study of chloride binding and diffusion in GGBS concrete", Cem. Concr. Res., vol. 33, no 1 (2003), pp. 1-7. http://dx.doi.org/10.1016/S0008-8846(02)00712-3

(74) Cheng, A.; Huang, R.; Wu, J.-K.; Chen, C.-H.: "Influence of GGBS on durability and corrosion behavior of reinforced concrete", Materials Chemistry and Physics, vol. 93, no 2-3 (2005), pp. 404-11. http://dx.doi.org/10.1016/j.matchemphys.2005.03.043

(75) ASTM-C989/C989M "Standard Specification for Slag Cement for Use in Concrete and Mortars". ASTM Standars (2012).

(76) Montemor, M. F.; Cunha, M. P.; Ferreira, M. G.; Simões, A. M.: "Corrosion behaviour of rebars in fly ash mortar exposed to carbon dioxide and chlorides", Cem. Concr. Comp., vol. 24, no 1 (2002), pp. 45-53. http://dx.doi.org/10.1016/S0958-9465(01)00025-7

(77) Choi, Y.-S.; Kim, J.-G.; Lee, K.-M.: "Corrosion behavior of steel bar embedded in fly ash concrete", Corrosion Science, vol. 48, no 7 (2006), pp. 1733-45. http://dx.doi.org/10.1016/j.corsci.2005.05.019

(78) Dhir, R. K.; Jones, M. R.: "Development of chloride-resisting concrete using fly ash", Fuel, vol. 78, no 2 (1999), pp. 137-42. http://dx.doi.org/10.1016/S0016-2361(98)00149-5

(79) Ampadu, K. O.; Torii, K.; Kawamura, M.: "Beneficial effect of fly ash on chloride diffusivity of hardened cement paste", Cem. Concr. Res., vol. 29, no 4 (1999), pp. 585-90. http://dx.doi.org/10.1016/S0008-8846(99)00047-2

(80) Bo.a, A. R.; Topçu, . B.: "Influence of fly ash on corrosion resistance and chloride ion permeability of concrete", Constr. Build. Mater., vol. 31, no 0 (2012), pp. 258-64.

(81) Aponte, D. F.; Barra, M.; Vàzquez, E.: "Durability and cementing efficiency of fly ash in concretes", Constr. Build. Mater., vol. 30, no 0 (2012), pp. 537-46. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.026

(82) Nath, P.; Sarker, P.: "Effect of Fly Ash on the Durability Properties of High Strength Concrete", Procedia Engineering, vol. 14, no 0 (2011), pp. 1149-56. http://dx.doi.org/10.1016/j.proeng.2011.07.144

(83) Diana, B.; Daniela, Á.; Mejía, R.: "Durabilidad de morteros adicionales con cenizas volantes de alto contenido de carbón", Rev LatinAm Metal Mater, vol. 32, no 1 (2012), pp. 61-70.

(84) Khunthongkeaw, J.; Tangtermsirikul, S.; Leelawat, T.: "A study on carbonation depth prediction for fly ash concrete", Constr. Build. Mater., vol. 20, no 9 (2006), pp. 744-53. http://dx.doi.org/10.1016/j.conbuildmat.2005.01.052

(85) Shi, H.-s.; Xu, B.-w.; Zhou, X.-c.: "Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete", Constr. Build. Mater., vol. 23, no 5 (2009), pp. 1980-5. http://dx.doi.org/10.1016/j.conbuildmat.2008.08.021 

(86) Ding, Q.; Geng, J.; Hu, S.; Sun, J.; Sun, B.: "Different effects of fly ash and slag on anti-rebar corrosion ability of concrete with chloride ion", Wuhan Univ J Nat Sci, vol. 14, no 4 (2009), pp. 355-61. http://dx.doi.org/10.1007/s11859-009-0414-3

(87) ASTM-C618 "Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete". ASTM Standards (2012).

(88) Abo-El-Enein, S. A.; Abbas, R.; Ezzat, E.-S.: "Propiedades y durabilidad de los cementos adicionados con metacaolín", Mater. Construcc., vol. 60, no 299 (2010), pp. 21-35. http://dx.doi.org/10.3989/mc.2010.50509

(89) Sabir, B. B.; Wild, S.; Bai, J.: "Metakaolin and calcined clays as pozzolans for concrete: a review", Cem. Concr. Comp., vol. 23, no 6 (2001), pp. 441-54. http://dx.doi.org/10.1016/S0958-9465(00)00092-5

(90) Siddique, R.; Klaus, J.: "Influence of metakaolin on the properties of mortar and concrete: A review", Applied Clay Science, vol. 43, no 3–4 (2009), pp. 392-400. http://dx.doi.org/10.1016/j.clay.2008.11.007

(91) Batis, G.; Pantazopoulou, P.; Tsivilis, S.; Badogiannis, E.: "The effect of metakaolin on the corrosion behavior of cement mortars", Cem. Concr. Comp., vol. 27, no 1 (2005), pp. 125-30. http://dx.doi.org/10.1016/j.cemconcomp.2004.02.041

(92) Parande, A. K.; Ramesh Babu, B.; Aswin Karthik, M.; Deepak Kumaar, K. K.; Palaniswamy, N.: "Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar", Constr. Build. Mater., vol. 22, no 3 (2008), pp. 127-34. http://dx.doi.org/10.1016/j.conbuildmat.2006.10.003

(93) Gutiérrez, R. M. d.; Delvasto, S.; Talero, R.: "Una nueva puzolana para materiales cementicios de elevadas prestaciones", Mater. Construcc., vol. 50, no 260 (2000), pp. 5-13. http://dx.doi.org/10.3989/mc.2000.v50.i260.386

(94) Courard, L.; Darimont, A.; Schouterden, M.; Ferauche, F.; Willem, X.; Degeimbre, R.: "Durability of mortars modified with metakaolin", Cem. Concr. Res., vol. 33, no 9 (2003), pp. 1473-9. http://dx.doi.org/10.1016/S0008-8846(03)00090-5

(95) Poon, C. S.; Kou, S. C.; Lam, L.: "Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete", Constr. Build. Mater., vol. 20, no 10 (2006), pp. 858-65. http://dx.doi.org/10.1016/j.conbuildmat.2005.07.001

(96) Bai, J.; Wild, S.; Sabir, B. B.: "Sorptivity and strength of air-cured and water-cured PC–PFA–MK concrete and the influence of binder composition on carbonation depth", Cem. Concr. Res., vol. 32, no 11 (2002), pp. 1813-21. http://dx.doi.org/10.1016/S0008-8846(02)00872-4

(97) Kim, H.-S.; Lee, S.-H.; Moon, H.-Y.: "Strength properties and durability aspects of high strength concrete using Korean metakaolin", Constr. Build. Mater., vol. 21, no 6 (2007), pp. 1229-37. http://dx.doi.org/10.1016/j.conbuildmat.2006.05.007

(98) Mejía, R.; Rodríguez, C.; Rodríguez, E.; Torres, J.; Delvasto, S.: "Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros", RevFacIngUnivAntioquia, vol. 48, no (2009), pp. 55-64.

(99) Vejmelková, E.; Pavlíková, M.; Keppert, M.; Keršner, Z.; Rovnaníková, P.; Ondráček, M.; Sedlmajer, M.; .erny´, R.: "High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics", Constr. Build. Mater., vol. 24, no 8 (2010), pp. 1404-11. http://dx.doi.org/10.1016/j.conbuildmat.2010.01.017

(100) Siddique, R.; Iqbal Khan, M. Rice Husk Ash, Supplementary Cementing Materials, Springer Berlin Heidelberg, 231-81 (2011).

(101) Gastaldini, A. L. G.; Isaia, G. C.; Saciloto, A. P.; Missau, F.; Hoppe, T. F.: "Influence of curing time on the chloride penetration resistance of concrete containing rice husk ash: A technical and economical feasibility study", Cem. Concr. Comp., vol. 32, no 10 (2010), pp. 783-93. http://dx.doi.org/10.1016/j.cemconcomp.2010.08.001

(102) Madandoust, R.; Ranjbar, M. M.; Moghadam, H. A.; Mousavi, S. Y.: "Mechanical properties and durability assessment of rice husk ash concrete", Biosystems Engineering, vol. 110, no 2 (2011), pp. 144-52. http://dx.doi.org/10.1016/j.biosystemseng.2011.07.009

(103) Nehdi, M.; Duquette, J.; El Damatty, A.: "Performance of rice husk ash produced using a new technology as a mineral admixture in concrete", Cem. Concr. Res., vol. 33, no 8 (2003), pp. 1203-10. http://dx.doi.org/10.1016/S0008-8846(03)00038-3

(104) Chindaprasirt, P.; Rukzon, S.: "Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar", Constr. Build. Mater., vol. 22, no 8 (2008), pp. 1601-6. http://dx.doi.org/10.1016/j.conbuildmat.2007.06.010

(105) Chatveera, B.; Lertwattanaruk, P.: "Durability of conventional concretes containing black rice husk ash", Journal of Environmental Management, vol. 92, no 1 (2011), pp. 59-66. http://dx.doi.org/10.1016/j.jenvman.2010.08.007 PMid:20863608

(106) Cizer, O.; Balen, K. V.; Elsen, J.; Gemert, D. V. "Carbonation and hydration of calcium hydroxide and calcium silicate binders with rice husk ash ". 2nd International Symposium on Advances in Concrete through Science and Engineering Quebec (2006).

(107) Kroehong, W.; Sinsiri, T.; Jaturapitakkul, C.; Chindaprasirt, P.: "Effect of palm oil fuel ash fineness on the microstructure of blended cement paste", Constr. Build. Mater., vol. 25, no 11 (2011), pp. 4095-104. http://dx.doi.org/10.1016/j.conbuildmat.2011.04.062

(108) Jaturapitakkul, C.; Kiattikomol, K.; Tangchirapat, W.; Saeting, T.: "Evaluation of the sulfate resistance of concrete containing palm oil fuel ash", Constr. Build. Mater., vol. 21, no 7 (2007), pp. 1399-405. http://dx.doi.org/10.1016/j.conbuildmat.2006.07.005

(109) Megat Johari, M. A.; Zeyad, A. M.; Muhamad Bunnori, N.; Ariffin, K. S.: "Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash", Constr. Build. Mater., vol. 30, no 0 (2012), pp. 281-8. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.007

(110) Shi, C.; Wu, Y.; Riefler, C.; Wang, H.: "Characteristics and pozzolanic reactivity of glass powders", Cem. Concr. Res., vol. 35, no 5 (2005), pp. 987-93. http://dx.doi.org/10.1016/j.cemconres.2004.05.015

(111) Shayan, A.; Xu, A.: "Value-added utilisation of waste glass in concrete", Cem. Concr. Res., vol. 34, no 1 (2004), pp. 81-9. http://dx.doi.org/10.1016/S0008-8846(03)00251-5

(112) Shao, Y.; Lefort, T.; Moras, S.; Rodriguez, D.: "Studies on concrete containing ground waste glass", Cem. Concr. Res., vol. 30, no 1 (2000), pp. 91-100. http://dx.doi.org/10.1016/S0008-8846(99)00213-6

(113) Shi, C.; Zheng, K.: "A review on the use of waste glasses in the production of cement and concrete", Resources, Conservation and Recycling, vol. 52, no 2 (2007), pp. 234-47. http://dx.doi.org/10.1016/j.resconrec.2007.01.013

(114) Matos, A. M.; Sousa-Coutinho, J.: "Durability of mortar using waste glass powder as cement replacement", Constr. Build. Mater., vol. 36, no 0 (2012), pp. 205-15. http://dx.doi.org/10.1016/j.conbuildmat.2012.04.027

(115) Payá, J.; Borrachero, M. V.; Monzó, J.; Soriano, L.: "Estudio del comportamiento de diversos residuos de catalizadores de craqueo catalítico (FCC) en cemento Portland", Mater. Construcc., vol. 59, no 296 (2009), pp. 37-52. http://dx.doi.org/10.3989/mc.2009.48108

(116) Zornoza, E.; Garcés, P.; Payá, J.: "Estudio de la velocidad de corrosión de aceros embebidos en morteros de cemento sustituidos con residuo de catalizador de craqueo catalítico (FC3R)", Mater. Construcc., vol. 58, no 292 (2008), pp. 27-43. http://dx.doi.org/10.3989/mc.2008.39006

(117) Ramírez-Arellanes, S.; Cano-Barrita, P. F. d. J.; Julián-Caballero, F.; Gómez-Ya-ez, C.: "Propiedades de durabilidad en concreto y análisis microestructural en pastas de cemento con adición de mucílago de nopal como aditivo natural", Mater. Construcc., vol. 62, no 307 (2012), pp. 327-41. http://dx.doi.org/10.3989/mc.2012.00211

(118) Ahmad, Z. Chapter 12 - Concrete Corrosion, Principles of Corrosion Engineering and Corrosion Control, Butterworth-Heinemann, Oxford, pp. 609-46 (2006). http://dx.doi.org/10.1016/B978-075065924-6/50013-1

(119) Wilson, K.; Jawed, M.; Ngala, V.: "The selection and use of cathodic protection systems for the repair of reinforced concrete structures", Constr. Build. Mater., vol. 39 (2013), pp. 19-25 http://dx.doi.org/10.1016/j.conbuildmat.2012.05.037

(120) Lourenço, Z.: "Protecção catódica de estruturas de betão armado", Corros Prot Mater, vol. 26, no 3 (2007), pp. 79-85.

(121) Bertolini, L.; Bolzoni, F.; Pedeferri, P.; Lazzari, L.; Pastore, T.: "Cathodic protection and cathodic preventionin concrete: principles and applications", Journal of Applied Electrochemistry, vol. 28, no 12 (1998), pp. 1321-31. http://dx.doi.org/10.1023/A:1003404428827

(122) Redaelli, E.; Bertolini, L.: "Electrochemical repair techniques in carbonated concrete. Part II: cathodic protection", Journal of Applied Electrochemistry, vol. 41, no 7 (2011), pp. 829-37. http://dx.doi.org/10.1007/s10800-011-0302-3

(123) Christodoulou, C.; Glass, G.; Webb, J.; Austin, S.; Goodier, C.: "Assessing the long term benefits of Impressed Current Cathodic Protection", Corrosion Science, vol. 52, no 8 (2010), pp. 2671-9. http://dx.doi.org/10.1016/j.corsci.2010.04.018

(124) Fu, X.; Chung, D. D. L.: "Carbon fiber reinforced mortar as an electrical contact material for cathodic protection", Cem. Concr. Res., vol. 25, no 4 (1995), pp. 689-94. http://dx.doi.org/10.1016/0008-8846(95)00057-J

(125) Hou, J.; Chung, D. D. L.: "Cathodic protection of steel reinforced concrete facilitated by using carbon fiber reinforced mortar or concrete", Cem. Concr. Res., vol. 27, no 5 (1997), pp. 649-56. http://dx.doi.org/10.1016/S0008-8846(97)00058-6

(126) Xu, J.; Yao, W.: "Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode", Constr. Build. Mater., vol. 23, no 6 (2009), pp. 2220-6. http://dx.doi.org/10.1016/j.conbuildmat.2008.12.002

(127) Jing, X.; Wu, Y.: "Electrochemical studies on the performance of conductive overlay material in cathodic protection of reinforced concrete", Constr. Build. Mater., vol. 25, no 5 (2011), pp. 2655-62. http://dx.doi.org/10.1016/j.conbuildmat.2010.12.015

(128) Darowicki, K.; Orlikowski, J.; Cebulski, S.; Krakowiak, S.: "Conducting coatings as anodes in cathodic protection", Progress in Organic Coatings, vol. 46, no 3 (2003), pp. 191-6. http://dx.doi.org/10.1016/S0300-9440(03)00003-1

(129) Orlikowski, J.; Cebulski, S.; Darowicki, K.: "Electrochemical investigations of conductive coatings applied as anodes in cathodic protection of reinforced concrete", Cem. Concr. Comp., vol. 26, no 6 (2004), pp. 721-8. http://dx.doi.org/10.1016/S0958-9465(03)00105-7

(130) Moreno, A. d. V.; Torres, A.; Terán, J.; Pérez, J. T.; Oidor, P.: "Protección catódica de concreto reforzado usando ánods de sacrificio discretos ", Instituto Mexicano del Transporte, vol. 290, no (2006), pp. 1-60.

(131) Tróconis, O.; Contreras, D.; Sánchez, M.; Fernández, M.; Bravo, J.; Morón, O.; Vezga, C.; Fernández, R.; Navarro, A.; Sarcos, A.: "Evaluación/Rehabilitación de estructuras en ambientes marinos. Caso historico: Puente de Maracaibo", Corros Prot Mater, vol. 25, no 3 (2006), pp. 74-91.

(132) Parthiban, G. T.; Parthiban, T.; Ravi, R.; Saraswathy, V.; Palaniswamy, N.; Sivan, V.: "Cathodic protection of steel in concrete using magnesium alloy anode", Corrosion Science, vol. 50, no 12 (2008), pp. 3329-35. http://dx.doi.org/10.1016/j.corsci.2008.08.040

(133) Burns, W. R.; Daily, S.: "Cathodic protection os a costal brigde in texas using a thermally sprayed aluminum alloy", NACE Corrosion 2004, vol. 04338, no (2004).

(134) Ip, A. K. C.; Pianca, F.: "Applications of sacrificial anode cathodic protection systems for highway bridges - Ontario experience. ", NACE Corrosion 2002, vol. 02267, no (2002). no (2004).

(136) Bertolini, L.; Gastaldi, M.; Pedeferri, M.; Redaelli, E.: "Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes", Corrosion Science, vol. 44, no 7 (2002), pp. 1497-513. http://dx.doi.org/10.1016/S0010-938X(01)00168-8

(137) Sergi, G.; Whitmore, D.: " Performance of zinc sacrificial anodes for long-term control of reinforcement corrosion", NACE Corrosion 2010, vol. no (2010).

(138) Pedeferri, P.: "Cathodic protection and cathodic prevention", Constr. Build. Mater., vol. 10, no 5 (1996), pp. 391-402. http://dx.doi.org/10.1016/0950-0618(95)00017-8

(139) Bertolini, L.; Bolzoni, F.; Gastaldi, M.; Pastore, T.; Pedeferri, P.; Redaelli, E.: "Effects of cathodic prevention on the chloride threshold for steel corrosion in concrete", Electrochimica Acta, vol. 54, no 5 (2009), pp. 1452-63. http://dx.doi.org/10.1016/j.electacta.2008.09.033

(140) Sánchez, M. J.: Extracción electroquímica de cloruros del hormigón armado: estudio de diferentes variables que influyen en la eficiencia del tratamiento, Universidad de Alicante, Alicante (2004).

(141) Barreto, E. C.: Avaliação do método de extração eletroquímica de cloretos para reabilitação de estruturas de concreto com problemas de corrosão das armaduras., Escola Politécnica da Universidade de São Paulo, São Paulo (2002).

(142) Bertolini, L.; Bolzoni, F.; Elsener, B.; Pedeferri, P.; Andrade, C.: "La realcalinización y la extracción electroquímica de los cloruros en las construcciones de hormigón armado", Mater. Construcc., vol. 46, no 244 (1996), pp. 45-55. http://dx.doi.org/10.3989/mc.1996.v46.i244.522

(143) Sánchez, M.; Garcés, P.; Climent, M.: "Extracción electroquímica de cloruros del hormigón armado: estudio de diferentes variables que influyen en la eficiencia del tratamiento", Mater. Construcc., vol. 56, no 284 (2006), pp. 17-26. http://dx.doi.org/10.3989/mc.2006.v56.i284.15

(144) Orellan, J. C.; Escadeillas, G.; Arliguie, G.: "Electrochemical chloride extraction: efficiency and side effects", Cem. Concr. Res., vol. 34, no 2 (2004), pp. 227-34. http://dx.doi.org/10.1016/j.cemconres.2003.07.001

(145) Abdelaziz, G. E.; Abdelalim, A. M. K.; Fawzy, Y. A.: "Evaluation of the short and long-term efficiencies of electro-chemical chloride extraction", Cem. Concr. Res., vol. 39, no 8 (2009), pp. 727-32. http://dx.doi.org/10.1016/j.cemconres.2009.05.015

(146) Rodríguez, S. L.; Miranda, J. M.; Tiburcio, G.; Narváez, L.; Hernández, L. S.: "State of corrosion of rebars embedded in mortar specimens after an electrochemical chloride removal", Portugaliae Electrochimica Acta, vol. 28, no 3 (2010), pp. 153-64. http://dx.doi.org/10.4152/pea.201003153

(147) Fajardo, G.; Escadeillas, G.; Arliguie, G.: "Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by "artificial" sea-water", Corrosion Science, vol. 48, no 1 (2006), pp. 110-25. http://dx.doi.org/10.1016/j.corsci.2004.11.015

(148) Orellan Herrera, J. C.; Escadeillas, G.; Arliguie, G.: "Electro-chemical chloride extraction: Influence of C3A of the cement on treatment efficiency", Cem. Concr. Res., vol. 36, no 10 (2006), pp. 1939-46. http://dx.doi.org/10.1016/j.cemconres.2006.03.030

(149) Elsener, B.; Angst, U.: "Mechanism of electrochemical chloride removal", Corrosion Science, vol. 49, no 12 (2007), pp. 4504-22. http://dx.doi.org/10.1016/j.corsci.2007.05.019

(150) Yeih, W.; Chang, J. J.; Hung, C. C.: "Selecting an adequate procedure for the electrochemical chloride removal", Cem. Concr. Res., vol. 36, no 3 (2006), pp. 562-70. http://dx.doi.org/10.1016/j.cemconres.2005.12.008

(151) Monteiro, E.; Helene, P.; Barbosa, P.: "Evaluación del método de extracción electroquímico de cloruros para la rehabilitación de estructuras de hormigón da-adas por corrosión de la armadura", Mater. Construcc., vol. 53, no 271-272 (2003), pp. 91-100. http://dx.doi.org/10.3989/mc.2003.v53.i271-272.293

(152) Miranda, J. M.; Cobo, A.; Otero, E.; González, J. A.: "Limitations and advantages of electrochemical chloride removal in corroded reinforced concrete structures", Cem. Concr. Res., vol. 37, no 4 (2007), pp. 596-603. http://dx.doi.org/10.1016/j.cemconres.2007.01.005

(153) Sánchez, M.; Alonso, M. C.: "Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of calcium nitrite", Constr. Build. Mater., vol. 25, no 2 (2011), pp. 873-8. http://dx.doi.org/10.1016/j.conbuildmat.2010.06.099

(154) Pérez, A.; Climent, M. A.; Garcés, P.: "Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as the anode", Corrosion Science, vol. 52, no 5 (2010), pp. 1576-81. http://dx.doi.org/10.1016/j.corsci.2010.01.016

(155) Ribeiro, P. H. L. C.: Realcalinização eletroquímica de estruturas de concreto armado carbonatadas inseridas no meio urbano:influência de características da estrutura no comportamento do tratamento, Universidade Federal da Paraíba, João Pessoa (2009).

(156) Banfill, P. F. G.: "Re-alkalisation of carbonated concrete — Effect on concrete properties", Constr. Build. Mater., vol. 11, no 4 (1997), pp. 255-8. http://dx.doi.org/10.1016/S0950-0618(97)00045-7

(157) Yeih, W.; Chang, J. J.: "A study on the efficiency of electrochemical realkalisation of carbonated concrete", Constr. Build. Mater., vol. 19, no 7 (2005), pp. 516-24. http://dx.doi.org/10.1016/j.conbuildmat.2005.01.006

(158) Redaelli, E.; Bertolini, L.: "Electrochemical repair techniques in carbonated concrete. Part I: electrochemical realkalisation", Journal of Applied Electrochemistry, vol. 41, no 7 (2011), pp. 817-27. http://dx.doi.org/10.1007/s10800-011-0301-4

(159) Araújo, W. C. d.: Estudo da repassivação da armadura em concretos carbonatados através da técnica de realcalinização química, Universidade de São Paulo, São Paulo (2009).

(160) González, F.: Realcalinización Electroquímica del Concreto Reforzado Carbonatado: Una opción de prevención contra la corrosión, Universidad Autónoma de Nuevo León y Université Paul Sabatier, San Nicolás de la Garza (2010).

(161) Tong, Y.; Bouteiller, V.; Marie-Victoire, E.; Joiret, S.: "Efficiency investigations of electrochemical realkalisation treatment applied to carbonated reinforced concrete — Part 1: Sacrificial anode process", Cem. Concr. Res., vol. 42, no 1 (2012), pp. 84-94. http://dx.doi.org/10.1016/j.cemconres.2011.08.008

(162) Carvajal, A. M.; Acu-a, A.; Acu-a, F.; Herrera, A.; Vera, R.: "Estudio sobre un método de recuperación de hormigones carbonatados: proceso de realcalinización", Revista de la Construcción, vol. 4, no 1 (2005), pp. 35-40.

(163) Miranda, J. M.; Otero, E.; González, J. A.: "Reflexiones sobre los métodos electroquímicos de rehabilitación de las estructuras corroídas de hormigón armado", Revista de Metalurgia, vol. 41, no (2005), pp. 274-8.

Downloads

Published

2013-03-30

How to Cite

Aguirre, A. M., & Mejía de Gutiérrez, R. (2013). Durability of reinforced concrete exposed to aggressive conditions. Materiales De Construcción, 63(309), 7–38. https://doi.org/10.3989/mc.2013.00313

Issue

Section

Research Articles