Eco-efficient alkaline activated binders for manufacturing blocks and pedestrian pavers with low carbon footprint: Mechanical properties and LCA assessment
DOI:
https://doi.org/10.3989/mc.2020.17419Keywords:
Fly ash, Rice husk ash, Alkaline-activated cement, Life cycle assessment, Precast elementsAbstract
This study proposes using two types of binders based on fly ash (FA) as primary raw material and a calcium source such as ground granulated blast furnace slag (GBFS) or Portland cement (OPC) for the production of eco-efficient pre-fabricated materials. These binders are denoted FA/GBFS (70/30) and FA/OPC (80/20). A mix of commercial sodium silicate and sodium hydroxide was used as a traditional activator (SN), and the mix of rice husk ash (RHA) and NaOH as an alternative activator (RN). The results show the possibility of obtaining a binary cement (FA/GBFS-RN) with compressive strength up to 38 MPa after curing for 28 days and 65 MPa after curing for 360 days. The hybrid binder (FA/OPC-RN) reported 30 MPa and 61 MPa at the same age of curing. Additionally, FA/GBFS-RN reports reductions in the environmental and health impacts of up to 75% compared to systems made with sodium silicate and sodium hydroxide. Based on the results, FA/GBFS-RN paste was selected as the optimal material for producing masonry blocks and pedestrian pavers, which met the Colombian standards.
Downloads
References
Guillaume, H.; Ouellet-Plamondonb, C. (2016) Recent update on the environmental impact of geopolymers. RILEM Technical Letters 1, 17 - 23. https://doi.org/10.21809/rilemtechlett.2016.6
Woszuk, A.; Bandura, L.; Franus, W. (2019) Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 235, 493-502. https://doi.org/10.1016/j.jclepro.2019.06.353
Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. (2015) A comprehensive review on the applications of coal fly ash. Earth-Sci Rev. 141, 105-121. https://doi.org/10.1016/j.earscirev.2014.11.016
Gollakota, A.R.K.; Volli, V.; Shu, C-M. (2019) Progressive utilisation prospects of coal fly ash: A review. Sci. Total. Environ. 672, 951-989. https://doi.org/10.1016/j.scitotenv.2019.03.337
PMid:30981170
Palomo, A.; Fernández-Jiménez, A. (2008) Nuevos cementos de bajo impacto ambiental. Caat Valencia. 114, 22-26.
Fernández-Jiménez A.; Palomo, Á. (2011) Propiedades y aplicaciones de los cementos alcalinos. Rev. Ing. Constr. 24, 213-232. https://doi.org/10.4067/S0718-50732009000300001
Kishan, L.J.; Radhakrishna (2013) Comparative study of cement concrete and geopolymer masonry blocks. IJRET: Int. J. Res. Eng. Technol, 361-365. https://doi.org/10.15623/ijret.2013.0213068
Arıöz, Ö.; Kilinc, K.; Tuncan, M.; Tuncan, A.; Kavas, T. (2010) Physical, mechanical and micro-structural properties of F type fly-ash based geopolymeric bricks produced by pressure forming process. Adv. Sci. Tech. 69, 69-74. https://doi.org/10.4028/www.scientific.net/AST.69.69
Villaquirán-Caicedo, M. (2019) Studying different silica sources for preparation of alternative waterglass used in preparation of binary geopolymer binders from metakaolin/boiler slag. Constr. Buil. Mater. 227, 116621. https://doi.org/10.1016/j.conbuildmat.2019.08.002
Torres-Carrasco, M.; Puertas, F. (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterization. J. Clean. Prod. 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074
Font, A.; Soriano, L.; Reig, L.; Tashima, M.; Borrachero, M.; Monzó, J.; Payá, J. (2018) Use of residual diatomaceous earth as a silica source in geopolymer production. Mater. Lett. 223, 10-13. https://doi.org/10.1016/j.matlet.2018.04.010
Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. (2018) Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. J. Clean. Prod. 187, 171-179. https://doi.org/10.1016/j.jclepro.2018.03.202
Tchakouté, H.K.; Rüsche, C.H.; Kong, S.; Ranjbar, N. (2016) Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements. J. Build. Eng. 6, 252-261. https://doi.org/10.1016/j.jobe.2016.04.007
Mellado, A.; Catalán, C.; Bouzón, N; Borrachero, M.V.; Monzó, J.M.; Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv. 4, 23846-23852. https://doi.org/10.1039/C4RA03375B
Tchakouté, H.K.; Rüsche, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. (2016) Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activator: A comparative study. Constr. Build. Mater. 114, 276-289. https://doi.org/10.1016/j.conbuildmat.2016.03.184
Tchakouté, H.K.; Rüsche, C.H.; Hinsch, M.; Djobo, J.N.Y.; Kamseu, E.; Leonelli, C. (2017) Utilization of sodium waterglass from sugar cane bagasse ash as a new alternative hardener for producing metakaolin-based geopolymer cement. Chem. Erde. 77, 257-266. https://doi.org/10.1016/j.chemer.2017.04.003
Passuello, A.; Rodríguez, E.D.; Hirt, E.; Longhi, M.; Bernal, S.A.; Provis, J.L.; Kirchheim, A.P. (2017) Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. J. Clean. Prod. 166, 680-689. https://doi.org/10.1016/j.jclepro.2017.08.007
Kamseu, E.; Beleuk à Moungram, L.M.; Cannio, M.; Billong, N.; Chaysuwan, D.; Chinje Melo, U.; Leonelli, C. (2017) Substitution of sodium silicate with rice husk ash- NaOH solution in metakaolin based geopolymer cement concerning reduction in global warming. J. Clean. Prod. 142, 3050-3060. https://doi.org/10.1016/j.jclepro.2016.10.164
Mehta P.K. (1973) Siliceous ashes and hydraulic cements prepared there-from. Belgium; Patent 802909.
Habert, G.; d'Espinose de Lacaillerie, J.B.; Roussel, N. (2011) An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod. 19, 1229-1238. https://doi.org/10.1016/j.jclepro.2011.03.012
Gao, X.; Yu, Q.L.; Brouwers, H.J.H. (2017) Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali-activated slag-fly ash composites. Ceram. Int. 43, 12408 -12419. https://doi.org/10.1016/j.ceramint.2017.06.108
Wang, S-D.; Scrivener, K.L. (2003) 29Si and 27Al NMR study of alkali-activated slag. Cem. Concr. Res. 33, 769-774. https://doi.org/10.1016/S0008-8846(02)01044-X
Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2012) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construc. 63, 361-375.
García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. (2013) Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cem. Concr. Res. 52, 111-122. https://doi.org/10.1016/j.cemconres.2013.03.022
Geraldo, R.H.; Fernandes, L.F.R.; Camarini, G. (2017) Water treatment sludge and rice husk ash to sustainable geopolymer production. J. Clean. Prod. 149, 146-155. https://doi.org/10.1016/j.jclepro.2017.02.076
Bouzón, N.; Payá, J.; Borrachero, M.V.; Soriano, L.; Tashima, M.M.; Monzó, J. (2014) Refluxed rice husk ash/ NaOH suspension for preparing alkali activated binders. Mater. Lett. 115, 72-74. https://doi.org/10.1016/j.matlet.2013.10.001
Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Provis, J. L. (2015) Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash-based activators. Mater. Construcc. 65 [318], e049. https://doi.org/10.3989/mc.2015.03114
Petrillo, A.; Cioffi, R.; Ferone, C.; Colangelo, F.; Borrelli, C. (2016) Eco-sustainable geopolymer concrete blocks production process. Agric. Agric. Sci. Procedia. 8, 408-418. https://doi.org/10.1016/j.aaspro.2016.02.037
Tempest, B.; Sanusi, O.; Gergely, J.; Ogunro, V.; Weggel, D. (2009) Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. World of Coal Ash Conference in Lexington, KY USA 1-17.
Villaquirán-Caicedo, M.A.; Mejía de Gutiérrez, R. (2018) Synthesis of ceramic materials from ecofriendly geopolymer precursors. Mater. Lett. 230, 300-304. https://doi.org/10.1016/j.matlet.2018.07.128
Robayo-Salazar, R.; Mejía-Arcilla, J.; Mejía de Gutierrez, R.; Martínez, E. (2018) Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr. Build. Mater. 176, 103-111. https://doi.org/10.1016/j.conbuildmat.2018.05.017
Robayo-Salazar, R.A.; Mejía-Arcila, J.M.; Mejía de Gutierrez, R. (2017) Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. J. Clean Prod. 166, 242-252. https://doi.org/10.1016/j.jclepro.2017.07.243
Palomo, A.; Fernández-Jiménez, A. (2011) Alkaline Activation, Procedure for Transforming Fly Ash into New Materials. Part 1: Applications. Proceedings of World of Coal Ash. 1-14.
Suksiripattanapong, C.; Horpibulsuk, S.; Chanprasert, P.; Sukmak, P.; Arulrajah, A. (2015) Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge. Constr. Build. Mater. 82, 20-30. https://doi.org/10.1016/j.conbuildmat.2015.02.040
Kumar, A.; Kumar, S. (2013) Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Constr. Build. Mater. 38, 865-871. https://doi.org/10.1016/j.conbuildmat.2012.09.013
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.