Performance of hybrid cement composite elements under drop-weight impact load
DOI:
https://doi.org/10.3989/mc.2014.06813Keywords:
Hybrid cement composites, Fibre reinforcement, Drop-weight impact load, Impact theoretical analyses, Mayusculaocal and global dynamic responseAbstract
The performance, under drop-weight impact load, of hybrid cement composite (HCC) elements, consisting of a top layer of plain concrete (PC) and a bottom layer of fibre reinforced concrete (FRC), in comparison with full-depth FRC and PC was studied. Apart from improving the tensile capacity of PC and saving fibre steel reinforcements of FRC, the results showed that HCC can effectively control the deformations and enhance the impact performance of the structural members as its outcomes were similar to that of a full-depth FRC. The analytical studies using Hughes empirical formulae (HEF) and yield line theory (YLT) adopted to investigate the practical use of HCC showed that they are applicable for design such HCC elements against impacts.
Downloads
References
Bangash, M.Y.H. (1993) Impact and Explosion: Analysis and Design, p. 856, Blackwell Scientific Publications, London.
Bentur, A.; Mindess, S. (2007) Fiber reinforced cementitious composites, p. 625, Second edition, Taylor & Francis, London and New York.
Brandt, A.M. (2007) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86 [1-3], 3-9. http://dx.doi.org/10.1016/j.compstruct.2008.03.006
Cánovas, M.F.; Hernando, V.M. (2012) Behavior of steel fiber high strength concrete under impact of projectiles. Mater. Construcc. 62 [307], 381-396. http://dx.doi.org/10.3989/mc.2012.00911
Melian, G.; Barluenga, G.; Hernandez-Olivares, F. (2010) Toughness increase of self-compacting concrete reinforced with polypropylene short fibers. Mater. Construcc., 60 [300], 83-97.http://dx.doi.org/10.3989/mc.2010.52309
Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T. (2006) Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Mater. Construcc. 56 [283] (2006), pp. 79-90. http://dx.doi.org/10.3989/mc.2006.v56.i283
Daudeville, L.; Malecot, Y. (2011) Concrete structures under impact. European Journal of Environmental and Civil Engineering. 15 [1], 101-140. http://dx.doi.org/10.1080/19648189.2011.9695306
Li, Q.H.; Xu, S.L. (2009) Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites. Science in China Series E: Technological Sciences. 52 [6], 1648-1664. http://dx.doi.org/10.1007/s11431-009-0161-x
Caratelli, A.; Meda, A.; Rinaldi, Z.; Romualdi, P. (2011) Structural behaviour of precast tunnel segments in fiber reinforced concrete. Tunnelling and Underground Space Technology, 26 [2], 284-291. http://dx.doi.org/10.1016/j.tust.2010.10.003
Shen, B.; Hubler, M.; Paulino, G.H.; Struble. L. (2008) Functionally-graded fiber-reinforced cement composite: Processing, microstructure, and properties. Cem. & Concr. Comp., 30 [8], 663-673. http://dx.doi.org/10.1016/j.cemconcomp.2008.02.002
Río, O.; Nguyen, V.D.; Turrillas, X.: "Functionally-graded self-compacting cement composites". In: Proceedings of Fifth North American Conference on the Design and Use of Self-Consolidating Concrete. Chicago-USA; 2013, p. 10 (CD). Nguyen, V.D.; Río, O.; Sánchez-Gálvez, V.: "Hybrid cement-based composite elements" In: Proceeding of 9th Symposium on High Performance Concrete: Design, Verification & Utilization. Rotorua-New Zealand; 2011, p. 6 (CD).
Nes, G.L.; Arve, O.J. (2008) Hybrid concrete structure - Experimental and numerical investigation of beams with lightweight concrete and fibre-reinforcement. Journal of Nordic Concrete Research, 38 [2], 1-20.
Roesler, J.; Paulino, G.; Gaedicke, C.; Bordelon, A.; Park, K. (2007) Fracture Behavior of Functionally Graded Concrete Materials for Rigid Pavements. Transportation Research Record, 2037 [1], 40-49. http://dx.doi.org/10.3141/2037-04
Chung, Y.L.; Chen, W.T. (2007) Bending behavior of FGM-coated and FGM-undercoated plates with two simply supported opposite edges and two free edges. Composite Structures, 81 [2], 157-167. http://dx.doi.org/10.1016/j.compstruct.2006.08.006
Cannillo, V.; Lusvarghi, L.; Manfredini, T.; Montorsi, M.; Siligardi, C.; Sola, A. (2007) Glass-ceramic functionally graded materials produced with different methods. J. European Ceramic Society, 27 [2-3], 1293-1298. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.05.033
Saatci, S.; Vecchio, F.L. (2006) Effects of shear mechanisms on impact behaviour of reinforced concrete beams. ACI Structural Journal, 106 [1], 78-86.
Alvarez, A.P.; Ros P.S. editores. (2012) Hormigón Autocompactante: avance y oportunidades, p. 530, Procc. 3° Congreso Iberoamericano sobre Hormigón Autocompactante, Madrid.
Comisión Permanente del Hormigón: Instrucción de Hormigón Estructural. (2008) EHE-08, Ministerio de Fomento, Madrid.
Ferrara, L.; Tregger N.; Shah, S.P. (2010) Flow-Induced Fiber Orientation in SCSFRC: Monitoring and Prediction. In: Khayat K.H. and Feys D. editors. Proceedings of the international RILEM workshop "Design, Production and Placement of Self-Consolidating Concrete-SCC2010", Montreal-Canada, 417-428.
Enfedaque, A.D. (2008) Resistencia a impacto de morteros de cemento reforzados con fibra de vidrio (GRC), p. 292, PhD thesis, Universidad Politécnica de Madrid.
Mindess, S.; Bentur, A. (1985) A preliminary study of the fracture of concrete beams under impact loading, using high speed photography. Cem. Concr. Res., 15 [3], 474-484. http://dx.doi.org/10.1016/0008-8846(85)90121-8
Sánchez-Gálvez V. (2012) Materiales para la Defensa, p. 109, Primera edición, Fundación Rogelio Segovia para el desarrollo de las Telecomunicaciones, Madrid.
Suaris, W.; Shah, S. P. (1983) Properties of concrete subjected to impact. Journal of Structural Engineering, 109 [7], 1727-1741. http://dx.doi.org/10.1061/(ASCE)0733-9445(1983)109:7(1727)
Ong, K.C.G.; Basheerkhan, M.; Paramasivam, P. (1999) Resistance of fibre concrete slabs to low velocity projectile impact. Cem. Concr. Comp., 21 [5-6], 391-401. http://dx.doi.org/10.1016/S0958-9465(99)00024-4
Nataraja, M.C.; Dhang, N.; Gupta, A.P. (1999) Statistical variations in impact resistance of steel fiber subjected to drop-weight test. Cem.Concr. Res., 29 [7], 989-95. http://dx.doi.org/10.1016/S0008-8846(99)00052-6
Rahmani, T.; Kiani, B.; Shekarchi, M.; Safari, A. (2012) Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop-weight test. Constr. Build Mater., 37 [12], 360-369. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.068
Yankelevsky, D.Z. (1997) Local response of concrete slabs to low velocity missile impact. Int. J. Impact Engng., 19 [4], 331-343. http://dx.doi.org/10.1016/S0734-743X(96)00041-3
Mougina J.P.; Perrotina P.; Mommessina, M.; Tonnelob, J.; Agbossoua, A. (2005) Rock fall impact on reinforced concrete slab: an experimental approach. Int. J. Impact Engng, 31 [2], 169-183. http://dx.doi.org/10.1016/j.ijimpeng.2003.11.005
Zhang, J.; Maalej, M.; Quek, S.T. (2007) Performance of hybrid-fiber ECC blast/shelter panels subjected to drop-weight impact. ASCE, J. Mater. Civ. Eng., 19 [10], 855-863. http://dx.doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855)
Sudarsana Rao, H.; Ghorpade, V.G.; Ramana, N.V.;Gnaneswar, K. (2010) Response of SIFCON two-way slabs under impact loading. Int. J. Impact Engng., 37 [8], 928-941.
Zaera, R.; Sanchez-Galvez, V. (1998) Analytical modelling of normal and oblique ballistic impact on ceramic/ metal lightweight armours. Int. J. Impact Eng., 21 [3], 133-148. http://dx.doi.org/10.1016/S0734-743X(97)00035-3
Chocron Benloulo, I.S.; Sánchez-Gálvez, V. (1998) A new analytical model to simulate impact onto ceramic/composite armors. Int. J. Impact Engng., 21 [6], 461-471. http://dx.doi.org/10.1016/S0734-743X(98)00006-2
Garg, A.C. (1988) Delamination-a damage mode in composite structures. Engineering Fracture Mechanics, 29 [5], 557-584. http://dx.doi.org/10.1016/0013-7944(88)90181-6
Bangash M.Y.H.; Bangash T. (2006) Explosion-Resistant Buildings. Design, Analysis and Case studies, p. 784, Springer, London.
Li, Q.M.; Reida, S.R.; Wen, H.M.; Telford A.R. (2005) Local impact effects of hard missiles on concrete targets. Int. J. Impact Engng., 32 [1-4], 224-284. http://dx.doi.org/10.1016/j.ijimpeng.2005.04.005
Mosley, B.; Bungey, J; Hulse, R. (2007) Reinforced concrete design to Eurocode 2, p. 420 6th edition, Palgrave MC, New York.
CEB-FIP (1993) CEB-FIP Mode Code for Concrete structures under impact and impulsive loading", Comité Euro-International du Béton, Bulletin d'Information, n°87, Lausanne, Switzerland.
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)
This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.