Comportamiento de elementos estructurales de compuestos híbridos base cemento frente a impacto de torre de caída

Autores/as

  • V. D. Nguyen Instituto de Ciencias de la Construcción Eduardo Torroja IETcc–CSIC, (Madrid, Spain)
  • O. Río Instituto de Ciencias de la Construcción Eduardo Torroja IETcc–CSIC, (Madrid, Spain)
  • V. Sánchez-Gálvez Universidad Politécnica de Madrid, (Madrid, Spain)

DOI:

https://doi.org/10.3989/mc.2014.06813

Palabras clave:

Compuesto hibrido base cemento, Fibra-reforzado, Carga de torre de caída, Análisis teórico de impacto, Respuesta dinámica local y global

Resumen


Se estudió el comportamiento, frente a impacto de torre de caída, de elementos híbridos base cemento (HCC), formados por una capa superior de hormigón en masa (PC) y una capa inferior de hormigón reforzado con fibras (FRC) en comparación con elementos análogos íntegramente fabricados con FRC y PC. Además de proporcionar una mejora en la resistencia frente a flexo-tracción de los PC y un ahorro en refuerzo usando fibras de acero en el caso de los FRC, los resultados mostraron que el HCC puede controlar eficazmente las deformaciones y mejorar el rendimiento frente a impacto de los elementos estructurales ya que sus resultados fueron análogos a la de los FRC. Los estudios analíticos, utilizando HEF e YLT, adoptados para investigar el uso práctico de los HCC mostraron que los mismos son aplicables para el diseño de estos elementos frente a impacto.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bangash, M.Y.H. (1993) Impact and Explosion: Analysis and Design, p. 856, Blackwell Scientific Publications, London.

Bentur, A.; Mindess, S. (2007) Fiber reinforced cementitious composites, p. 625, Second edition, Taylor & Francis, London and New York.

Brandt, A.M. (2007) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86 [1-3], 3-9. http://dx.doi.org/10.1016/j.compstruct.2008.03.006

Cánovas, M.F.; Hernando, V.M. (2012) Behavior of steel fiber high strength concrete under impact of projectiles. Mater. Construcc. 62 [307], 381-396. http://dx.doi.org/10.3989/mc.2012.00911

Melian, G.; Barluenga, G.; Hernandez-Olivares, F. (2010) Toughness increase of self-compacting concrete reinforced with polypropylene short fibers. Mater. Construcc., 60 [300], 83-97.http://dx.doi.org/10.3989/mc.2010.52309

Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T. (2006) Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Mater. Construcc. 56 [283] (2006), pp. 79-90. http://dx.doi.org/10.3989/mc.2006.v56.i283

Daudeville, L.; Malecot, Y. (2011) Concrete structures under impact. European Journal of Environmental and Civil Engineering. 15 [1], 101-140. http://dx.doi.org/10.1080/19648189.2011.9695306

Li, Q.H.; Xu, S.L. (2009) Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites. Science in China Series E: Technological Sciences. 52 [6], 1648-1664. http://dx.doi.org/10.1007/s11431-009-0161-x

Caratelli, A.; Meda, A.; Rinaldi, Z.; Romualdi, P. (2011) Structural behaviour of precast tunnel segments in fiber reinforced concrete. Tunnelling and Underground Space Technology, 26 [2], 284-291. http://dx.doi.org/10.1016/j.tust.2010.10.003

Shen, B.; Hubler, M.; Paulino, G.H.; Struble. L. (2008) Functionally-graded fiber-reinforced cement composite: Processing, microstructure, and properties. Cem. & Concr. Comp., 30 [8], 663-673. http://dx.doi.org/10.1016/j.cemconcomp.2008.02.002

Río, O.; Nguyen, V.D.; Turrillas, X.: "Functionally-graded self-compacting cement composites". In: Proceedings of Fifth North American Conference on the Design and Use of Self-Consolidating Concrete. Chicago-USA; 2013, p. 10 (CD). Nguyen, V.D.; Río, O.; Sánchez-Gálvez, V.: "Hybrid cement-based composite elements" In: Proceeding of 9th Symposium on High Performance Concrete: Design, Verification & Utilization. Rotorua-New Zealand; 2011, p. 6 (CD).

Nes, G.L.; Arve, O.J. (2008) Hybrid concrete structure - Experimental and numerical investigation of beams with lightweight concrete and fibre-reinforcement. Journal of Nordic Concrete Research, 38 [2], 1-20.

Roesler, J.; Paulino, G.; Gaedicke, C.; Bordelon, A.; Park, K. (2007) Fracture Behavior of Functionally Graded Concrete Materials for Rigid Pavements. Transportation Research Record, 2037 [1], 40-49. http://dx.doi.org/10.3141/2037-04

Chung, Y.L.; Chen, W.T. (2007) Bending behavior of FGM-coated and FGM-undercoated plates with two simply supported opposite edges and two free edges. Composite Structures, 81 [2], 157-167. http://dx.doi.org/10.1016/j.compstruct.2006.08.006

Cannillo, V.; Lusvarghi, L.; Manfredini, T.; Montorsi, M.; Siligardi, C.; Sola, A. (2007) Glass-ceramic functionally graded materials produced with different methods. J. European Ceramic Society, 27 [2-3], 1293-1298. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.05.033

Saatci, S.; Vecchio, F.L. (2006) Effects of shear mechanisms on impact behaviour of reinforced concrete beams. ACI Structural Journal, 106 [1], 78-86.

Alvarez, A.P.; Ros P.S. editores. (2012) Hormigón Autocompactante: avance y oportunidades, p. 530, Procc. 3° Congreso Iberoamericano sobre Hormigón Autocompactante, Madrid.

Comisión Permanente del Hormigón: Instrucción de Hormigón Estructural. (2008) EHE-08, Ministerio de Fomento, Madrid.

Ferrara, L.; Tregger N.; Shah, S.P. (2010) Flow-Induced Fiber Orientation in SCSFRC: Monitoring and Prediction. In: Khayat K.H. and Feys D. editors. Proceedings of the international RILEM workshop "Design, Production and Placement of Self-Consolidating Concrete-SCC2010", Montreal-Canada, 417-428.

Enfedaque, A.D. (2008) Resistencia a impacto de morteros de cemento reforzados con fibra de vidrio (GRC), p. 292, PhD thesis, Universidad Politécnica de Madrid.

Mindess, S.; Bentur, A. (1985) A preliminary study of the fracture of concrete beams under impact loading, using high speed photography. Cem. Concr. Res., 15 [3], 474-484. http://dx.doi.org/10.1016/0008-8846(85)90121-8

Sánchez-Gálvez V. (2012) Materiales para la Defensa, p. 109, Primera edición, Fundación Rogelio Segovia para el desarrollo de las Telecomunicaciones, Madrid.

Suaris, W.; Shah, S. P. (1983) Properties of concrete subjected to impact. Journal of Structural Engineering, 109 [7], 1727-1741. http://dx.doi.org/10.1061/(ASCE)0733-9445(1983)109:7(1727)

Ong, K.C.G.; Basheerkhan, M.; Paramasivam, P. (1999) Resistance of fibre concrete slabs to low velocity projectile impact. Cem. Concr. Comp., 21 [5-6], 391-401. http://dx.doi.org/10.1016/S0958-9465(99)00024-4

Nataraja, M.C.; Dhang, N.; Gupta, A.P. (1999) Statistical variations in impact resistance of steel fiber subjected to drop-weight test. Cem.Concr. Res., 29 [7], 989-95. http://dx.doi.org/10.1016/S0008-8846(99)00052-6

Rahmani, T.; Kiani, B.; Shekarchi, M.; Safari, A. (2012) Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop-weight test. Constr. Build Mater., 37 [12], 360-369. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.068

Yankelevsky, D.Z. (1997) Local response of concrete slabs to low velocity missile impact. Int. J. Impact Engng., 19 [4], 331-343. http://dx.doi.org/10.1016/S0734-743X(96)00041-3

Mougina J.P.; Perrotina P.; Mommessina, M.; Tonnelob, J.; Agbossoua, A. (2005) Rock fall impact on reinforced concrete slab: an experimental approach. Int. J. Impact Engng, 31 [2], 169-183. http://dx.doi.org/10.1016/j.ijimpeng.2003.11.005

Zhang, J.; Maalej, M.; Quek, S.T. (2007) Performance of hybrid-fiber ECC blast/shelter panels subjected to drop-weight impact. ASCE, J. Mater. Civ. Eng., 19 [10], 855-863. http://dx.doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855)

Sudarsana Rao, H.; Ghorpade, V.G.; Ramana, N.V.;Gnaneswar, K. (2010) Response of SIFCON two-way slabs under impact loading. Int. J. Impact Engng., 37 [8], 928-941.

Zaera, R.; Sanchez-Galvez, V. (1998) Analytical modelling of normal and oblique ballistic impact on ceramic/ metal lightweight armours. Int. J. Impact Eng., 21 [3], 133-148. http://dx.doi.org/10.1016/S0734-743X(97)00035-3

Chocron Benloulo, I.S.; Sánchez-Gálvez, V. (1998) A new analytical model to simulate impact onto ceramic/composite armors. Int. J. Impact Engng., 21 [6], 461-471. http://dx.doi.org/10.1016/S0734-743X(98)00006-2

Garg, A.C. (1988) Delamination-a damage mode in composite structures. Engineering Fracture Mechanics, 29 [5], 557-584. http://dx.doi.org/10.1016/0013-7944(88)90181-6

Bangash M.Y.H.; Bangash T. (2006) Explosion-Resistant Buildings. Design, Analysis and Case studies, p. 784, Springer, London.

Li, Q.M.; Reida, S.R.; Wen, H.M.; Telford A.R. (2005) Local impact effects of hard missiles on concrete targets. Int. J. Impact Engng., 32 [1-4], 224-284. http://dx.doi.org/10.1016/j.ijimpeng.2005.04.005

Mosley, B.; Bungey, J; Hulse, R. (2007) Reinforced concrete design to Eurocode 2, p. 420 6th edition, Palgrave MC, New York.

CEB-FIP (1993) CEB-FIP Mode Code for Concrete structures under impact and impulsive loading", Comité Euro-International du Béton, Bulletin d'Information, n°87, Lausanne, Switzerland.

Publicado

2014-03-30

Cómo citar

Nguyen, V. D., Río, O., & Sánchez-Gálvez, V. (2014). Comportamiento de elementos estructurales de compuestos híbridos base cemento frente a impacto de torre de caída. Materiales De Construcción, 64(314), e017. https://doi.org/10.3989/mc.2014.06813

Número

Sección

Artículos