Concrete laterally confined with fibre-reinforced polymers (FRP): experimental study and theoretical model


  • C. Aire Universidad Nacional Autónoma de México
  • R. Gettu Indian Institute of Technology, Madras
  • J. R. Casas Universidad Politécnica de Cataluña
  • S. Marques Univ. Federal de Alagoas
  • D. Marques Univ. Federal de Alagoas



compressive strength, confinement, stressstrain relationship, confinement model


This paper presents the findings of an experimental and analytical study of concrete cylinder behaviour when wrapped in fibreglass or carbon fibre-reinforced polymers (FRP). Compression testing was conducted on normal (30 MPa) and high (70 MPa) strength confined and unconfined concrete cylinders measuring 150 x 300 mm. The stress-strain relationship was evaluated in both cases. The findings showed that strength and ductility rose with FRP confinement. The experimental findings were used to develop an analytical model for predicting the stress-strain behaviour of FRP-confined concrete. A comparison of the experimental and analytical results revealed that the model can satisfactorily predict the stress-strain behaviour and ultimate compressive strength of the concretes studied.


Download data is not yet available.


(1) Toutanji, H. y Deng, Y. (2001): “Performance of concrete columns strengthened with fiber reinforced polymer composite sheets”. Advanced Composite Materials, vol. 10, nº 23, pp. 159-168. doi:10.1163/156855101753396636

(2) Rousakis, T.; Karabinis, A. y Kiousis, P. (2007): “FRP-confined concrete members: Axial compression experiments and plasticity modeling”. Engineering Structures, vol. 29, July 2007, pp. 1343-1353. doi:10.1016/j.engstruct.2006.08.006

(3) Mandal, S.; Hoskin, A. y Fam, A. (2005): “Influence of concrete strength on confinement effectiveness of fiber reinforced polymer circular jacket”. ACI Structural Journal, vol. 102, nº 3, May-June 2005, pp. 383-392.

(4) Teng, J. y Lam, L. (2004): “Behavior and modeling of fiber reinforced polymer-confined concrete”. ASCE Journal of Structural Engineering, vol. 130, nº 11, November 2004, pp. 1713-1723. doi:10.1061/(ASCE)0733-9445(2004)130:11(1713)

(5) Mirmiran, A. y Shahawy (1997): “Behavior of concrete columns confined by fiber composites”. ASCE Journal of Structural Engineering, vol. 123, nº 5, May 1997, pp 583-590. doi:10.1061/(ASCE)0733-9445(1997)123:5(583)

(6) Harmon, T.; Slattery, K. y Ramakrishran, S. (1995): “The effect of confinement stiffness on confined concrete nonmetallic (FRP) reinforcement for concrete structures”. Proceeding of the Second International RILEM Symposium (FRPRCS-2) pp. 584-592.

(7) Larralde, J. (1997): “Compressive strength of small concrete specimens confined with fiberglas laminates”. Cement, Concrete and Aggregates, vol. 19, nº 1, pp. 17-21.

(8) Toutanji, H. (1999): “Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets”. ACI Materials Journal, vol. 96, nº 3, May-June, pp. 397-404.

(9) Xiao, Y. y Wu, H. (2000): “Compressive behavior of concrete confined by carbon fiber composite jackets”, ASCE Journal of the Material in Civil Engineering, vol. 12, nº 2, May, pp. 139-146. doi:10.1061/(ASCE)0899-1561(2000)12:2(139)

(10) Spoelstra, M. y Monti, G. (1999): “FRP confined concrete model”, ASCE Journal of Composites for Construction, vol. 3, nº 3 August 1999, pp. 143-150. doi:10.1061/(ASCE)1090-0268(1999)3:3(143)

(11) Razvi, S. y Saatcioglu, M. (1999): “Confinement model for high strength concrete”, ASCE Journal of Structural Engineering, vol. 125, nº 3 March 1999, pp. 281-289. doi:10.1061/(ASCE)0733-9445(1999)125:3(281)

(12) ACI-440 (2002): “Guidelines for the design and construction of externally bonded FRP systems for strengthening concrete structures”. ACI 440, Detroit, USA.

(13) CSA (2002): “Design and construction of building components with fiber-reinforced polymers”. CSA-S806-02, CSA Rexdale, Toronto, Canada.

(14) fib (2001): “Externally bonded FRP reinforcement for RC structures”. Task Group 9.3 FRP, fib CEB-FIP July. (15 JSCE (1997): “Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials”. Concrete Engineering Series 23, October, Tokyo, Japon.

(16) Marqués, C. S. y Marqués, C. D. (2000): “Modelagem do comportamento de concreto de alta resistencia sobre condicões de confinamento”, Ibracon, 42 Congreso Brasileiro do Concreto, II-A-018.

(17) Mander, J.; Priestley, M. y Park, R. (1988): “Observed stress-strain behavior of confined concrete”. Journal of Structural Engineering, vol. 14, nº 8, pp. 1827-1849.

(18) Cusson, D. y Paultre, P. (1995): “Stress-strain model for confined high strength concrete”, ASCE Journal of Structural Engineering, vol. 121, nº 3, pp. 468-477. doi:10.1061/(ASCE)0733-9445(1995)121:3(468)

(19) Pantazopoulou, S. y Mills, R. (1995): “Microstructural aspects of the mechanicals response of plain concrete”. ACI Materials Journal, vol. 92, nº 6, Nov.-Dec., pp. 605-616.




How to Cite

Aire, C., Gettu, R., Casas, J. R., Marques, S., & Marques, D. (2010). Concrete laterally confined with fibre-reinforced polymers (FRP): experimental study and theoretical model. Materiales De Construcción, 60(297), 19–31.



Research Articles