Evolución de la oxidación de la pirrotina presente en áridos para hormigón

Autores/as

  • I. Oliveira Universidad Politécnica de Cataluña
  • S. H.P. Cavalaro Universidad Politécnica de Cataluña
  • A. Aguado Universidad Politécnica de Cataluña

DOI:

https://doi.org/10.3989/mc.2014.08413

Palabras clave:

Sulfuro de hierro, Oxidación, Árido, Ataque sulfático interno, Presa

Resumen


Rocas con bandas de pirrotina han sido usadas para producir áridos destinados a la fabricación de hormigones. Las mismas son susceptible a un fenómeno de oxidación que a largo plazo produce la degradación del material, llevando a importantes repercusiones económica y en cuanto a la seguridad. El presente estudio evalúa la influencia de diferentes aspectos que pueden afectar dicho proceso de oxidación del agregado, tales como la existencia de caminos preferentes para la entrada del agente oxidante y los elementos químicos involucrados en la reacción. Para ello, muestras de roca con pirrotina han sido analizadas mediante microscopía electrónica de barrido. Los resultados indican que la pirrotina aparece en bandas que dan lugar a planos de debilidad y fisuración. Esas fisuras actúan como caminos preferentes a la entrada del oxígeno. Asimismo, con base en los análisis realizados se ha propuesto una nueva representación para el proceso de oxidación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Cárdenes, V.; García-Guinea, J.; Monterroso, C.; de la Horra, R. (2008) Protocol for assessing the effectiveness of protective coatings for roofing slate. Mater. Construc., 58 [289–290], 263–279. http://dx.doi.org/10.3989/mc.2008.v58.i289-290.68

2. Aguado, A.; Agulló, L.; Casanova, I.; López, C.M. (1998) Estudio de fenómenos expansivos en presas de hormigón. De la micro a la macro estructura. Comité Español de Grandes Presas. Premio José Torán.

3. Casanova, I.; Agulló, L.; Aguado, A. (1996) Aggregate expansivity due to sulfide oxidation – I. Reaction system and rate model. Cem. Concr. Res., 26, 993–998. http://dx.doi.org/10.1016/0008-8846(96)00085-3

4. Czerewko, M.A.; Cripps, J.C.; Reid, J.M.; Duffell, C.G. (2003) Sulfur species in geological minerals – sources and quantification. Cem. Concr. Res., 25, 657–671. http://dx.doi.org/10.1016/S0958-9465(02)00066-5

5. Gomides, J.M.J. (2009) Investigação de agregados contendo sulfetos e seus efeitos sobre a durabilidade do concreto. PhD Tesis (in portuguese), Porto Alegre.

6. Lee, H.; Cody, R.D.; Cody, A.M.; Spry, P.G. (2005) The formation and role of ettringite in Iowa highway concrete deterioration. Cem. Concr. Res., 35, 332–343. http://dx.doi.org/10.1016/j.cemconres.2004.05.029

7. Oliveira, I.; Cavalaro, S.H.P.; Aguado, A. (2013) New Unreacted-Core Model to Predict Pyrrhotite Oxidation in Concrete Dams. J. Mater. Civ. Eng., 25 [3], 372–381. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000531

8. Oliveira, I.; Cavalaro, S.H.P.; Aguado, A. (2013) New kinetic model to quantify the internal sulfate attack in concrete. Cem. Concr. Res., 43, 95–104. http://dx.doi.org/10.1016/j.cemconres.2012.09.010

9. Becker, M. (2004) The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits and its effects on flotation performance. PhD Tesis, University of Pretoria.

10. Chinchon, J.S.; Ayora, C.; Aguado, A.; Guirado, F. (1995) Influence of weathering of iron sulfides contained in aggregates on concrete durability. Cem. Concr. Res., 25, 1264–1272. http://dx.doi.org/10.1016/0008-8846(95)00119-W

11. Janzen, M.P.; Nicholson, R.V.; Scharer, J.N. (2000) Pyrrhotite reactions kinetics: reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochimica et Cosmochimica Acta, 64, 1511–1522. http://dx.doi.org/10.1016/S0016-7037(99)00421-4

12. Steger, H.F. (1982) Oxidation of sulfide minerals VII. Effect of temperature and relative humidity on the oxidation of the pyrrhotite. Chem. Geol., 35, 281–295. http://dx.doi.org/10.1016/0009-2541(82)90006-7

13. Tagnit-Hamou, A.; Saric-Coric, M.; Rivard, P. (2005) Internal deterioration of concrete by the oxidation of pyrrhotitic aggregates. Cem. Concr. Res., 35, 99–107. http://dx.doi.org/10.1016/j.cemconres.2004.06.030

14. Schmidt, T.; Leemann, A.; Gallucci, E.; Scrivener, K.L. (2009) Microstructural investigations of iron sulfide degradation in concrete. Int. Baustofftagung (IBAUSIL), Weimar, Germany, 23–26.

15. García-Guinea, J.; Cardenes, V.; Lombardero, M.; Desiloniz, M.I. (2002) Determination of iron sulphides in roofing slates from the north west of Spain. Mater. Construc., 52 [266], 55–63. http://dx.doi.org/10.3989/mc.2002.v52.i266.334

16. Ayora, C.; Chinchón, S.; Aguado, A.; Guirado, F. (1998) Weathering of iron sulfides and concrete alteration: thermodynamic model and observation in dams from Central Pyreness, Spain. Cem. Concr. Res., 28, 1223–1235. http://dx.doi.org/10.1016/S0008-8846(98)00137-9

17. Mycroft, J.R.; Nesbitt, H.W.; Pratt, A.R. (1995) X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: Distribution of oxidized species with depth. Geochimica et Cosmochimica Acta., 59, 721–733. http://dx.doi.org/10.1016/0016-7037(94)00352-M

18. Pratt, A.R.; Muir, I.J.; Nesbitt, H.W. (1994) X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochimica et Cosmochimica Acta., 58, 827–841. http://dx.doi.org/10.1016/0016-7037(94)90508-8

19. Jones, C.F.; Lecount, S.; Smart, R.; White, T. (1992) Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies. Appl. Surf. Sci., 55, 65–85. http://dx.doi.org/10.1016/0169-4332(92)90382-8

20. Belzile, N.; Chen, Y.; Cai, M.; Li, Y. (2004) A review on pyrrhotite oxidation. J. Geochem. Exploration., 84, 65–76. http://dx.doi.org/10.1016/j.gexplo.2004.03.003

21. Legrand, D.L.; Bancroft, G.M.; Nesbitt, H.W. (2005) Oxidation/alteration of pentlandite and pyrrhotite surfaces at pH 9.3: Part I - assignment of XPS spectra and chemical trends. Am. Mineral., 90, 1042–1054. http://dx.doi.org/10.2138/am.2005.1691

22. Oliveira, I.; Chinchón-Paya, S.; Aguado, A.; Chinchón, S. (2011) Pyrrhotite oxidation kinetics: host rock influence and the effect of aggregate size on a concrete dam. XIII ICCC - International Congress on Chemistry of Cement, Madrid, Spain, ISBN: 84-7292-399-7.

23. Araújo, G.S. (2008) La reacción sulfática de origen interno en presas de hormigón. Propuesta metodológica de análisis. PhD Tesis (in spanish). Universidad Politécnica de Catalunya, Barcelona.

24. Oliveira, I. (2011) Reacción sulfática interna en presas de hormigón: cinética del comportamiento. PhD Thesis. Polytechnic University of Catalunya (in Spanish), Barcelona.

25. Divet, L. (2001) Les reactions sulfatiques internes au beton. Contribution à l’etude des mecanismes de la formation differee de l’ettringite. PhD Thesis, Conservatoire National des Arts et Metiers, Paris.

Publicado

2014-12-30

Cómo citar

Oliveira, I., Cavalaro, S. H., & Aguado, A. (2014). Evolución de la oxidación de la pirrotina presente en áridos para hormigón. Materiales De Construcción, 64(316), e038. https://doi.org/10.3989/mc.2014.08413

Número

Sección

Artículos

Artículos más leídos del mismo autor/a

1 2 > >>