Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O<3 and Na2O/SiO2 molar ratios
DOI:
https://doi.org/10.3989/mc.2015.00814Keywords:
Spent fluid catalytic cracking catalyst, Alkali-activation, Geopolymers, Structural characterizationAbstract
This paper assesses the feasibility of using a spent fluid catalytic cracking catalyst (SFCC) as precursor for the production of geopolymers. The mechanical and structural characterization of alkali-activated SFCC binders formulated with different overall (activator + solid precursor) SiO2/Al2O3 and Na2O/SiO2 molar ratios are reported. Formation of an aluminosilicate ‘geopolymer’ gel is observed under all conditions of activation used, along with formation of zeolites. Increased SiO2/Al2O3 induces the formation of geopolymers with reduced mechanical strength, for all the Na2O/SiO2 ratios assessed, which is associated with excess silicate species supplied by the activator. This is least significant at increased alkalinity conditions (higher Na2O/SiO2 ratios), as larger extents of reaction of the spent catalyst are achieved. SiO2/Al2O3 and Na2O/SiO2 ratios of 2.4 and 0.25, respectively, promote the highest compressive strength (67 MPa). This study elucidates the great potential of using SFCC as precursor to produce sustainable ceramic-like materials via alkali-activation.
Downloads
References
1. Zornoza-Gómez, E. (2007) El papel del catalizador usado de craqueo catalítico (fcc) como material puzolánico en el proceso de corrosión de armaduras de hormigón, in Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil. Universitat Politécnica de Valencia: Valencia- Espa-a. 328.
2. Pacewska, B.; Wilinska, I.; Kubissa, J. (1998) Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive. Thermochim. Acta 322 [2], 175–181. http://dx.doi.org/10.1016/S0040-6031(98)00498-5
3. Payá, J.; Monzó, J.; Borrachero, M.V. (1999) Fluid catalytic cracking catalyst residue (FC3R): An excellent mineral by-product for improving early-strength development of cement mixtures. Cem. Concr. Res. 29 [11],1773–1779. http://dx.doi.org/10.1016/S0008-8846(99)00164-7
4. Letzsch, W. (2010) Global demand for catalytic technology increases. Available from: http://www.hartfuel.com/f.catalyst.html.
5. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. (2007) Geopolymer technology: The current state of the art. J. Mater. Sci. 42 [9], 2917–2933. http://dx.doi.org/10.1007/s10853-006-0637-z
6. Duxson, P.; Provis, J.L. (2008) Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91 [12], 3864–3869. http://dx.doi.org/10.1111/j.1551-2916.2008.02787.x
7. Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. (2000) Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 30 [10], 1625–1632. http://dx.doi.org/10.1016/S0008-8846(00)00298-2
8. Kovalchuk, G.; Fernández-Jiménez, A.; Palomo, A. (2008) Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Mater. Construcc. 58 [291], 35–52.
9. Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construcc. 63 [311], 361–375.
10. Shi, C.; Day, R.L. (1993) Chemical activation of blended cements made with lime and natural pozzolans. Cem. Concr. Res. 23 [6], 1389–1396. http://dx.doi.org/10.1016/0008-8846(93)90076-L
11. Najafi Kani, E.; Allahverdi, A.; Provis, J.L. (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34 [1], 25–33. http://dx.doi.org/10.1016/j.cemconcomp.2011.07.007
12. Xu, H.; van Deventer, J.S.J. (2000) The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Proc. 59 [3], 247–266. http://dx.doi.org/10.1016/S0301-7516(99)00074-5
13. Feng, D.; Provis, J.L.; van Deventer, J.S.J. (2012) Thermal activation of albite for the synthesis of one-part mix geopolymers. J. Am. Ceram. Soc. 95 [5], 565–572. http://dx.doi.org/10.1111/j.1551-2916.2011.04925.x
14. Tashima, M.M.; Akasaki, J.L.; Castaldelli, V.N.; Soriano, L.; Monzó, J.; Payá, J.; Borrachero, M.V. (2012) New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Mater. Lett. 80, 50–52. http://dx.doi.org/10.1016/j.matlet.2012.04.051
15. Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Gehman, J.D.; Monzó, J.M.; Payá, J.; Borrachero, M.V. (2013) Geopolymer based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel. 109, 493–502. http://dx.doi.org/10.1016/j.fuel.2013.02.053
16. Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Gordillo, M.; Provis, J.L. (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46 [16], 5477–5486. http://dx.doi.org/10.1007/s10853-011-5490-z
17. Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surfaces A 269 [1–3], 47–58. http://dx.doi.org/10.1016/j.colsurfa.2005.06.060
18. Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. (2005) Do geopolymers actually contain nanocrystalline zeolites? - A reexamination of existing results. Chem. Mater. 17 [12], 3075–3085. http://dx.doi.org/10.1021/cm050230i. http://dx.doi.org/10.1021/cm050230i
19. Lloyd, R.R.; Provis, J.L.; van Deventer, J.S.J. (2009) Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J. Mater. Sci. 44 [2], 608–619. http://dx.doi.org/10.1007/s10853-008-3077-0
20. Gualtieri, A.; Norby, P.; Artioli, G.; Hanson, J. (1997) Kinetics of formation of zeolite Na-A [LTA] from natural kaolinites. Phys. Chem. Miner. 24 [3], 191–199. http://dx.doi.org/10.1007/s002690050032
21. Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90 [6], 2118–2124. http://dx.doi.org/10.1016/j.fuel.2011.01.018
22. Madejova, J.; Komadel, P. (2001) Baseline studies of the Clay Minerals Society source clays: Infrared methods. Clays Clay Miner. 49 [5], 410–432. http://dx.doi.org/10.1346/CCMN.2001.0490508
23. Miessner, H.; Kosslick, H.; Lohse, U.; Parlitz, B.; Tuan, V.A. (1993) Characterization of highly dealuminated faujasite-type zeolites: ultrastable zeolite Y and ZSM-20. J. Phys. Chem. 97, 9741–9748. http://dx.doi.org/10.1021/j100140a034
24. Farmer V.C. The Infrared Spectra of Minerals. London: Mineralogical Society, 1974. http://dx.doi.org/10.1180/mono-4
25. Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. (2007) Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23 [15], 8170–8179. http://dx.doi.org/10.1021/la700713g PMid:17590027
26. Provis, J.L.; Duxson, P.; Lukey, G.C.; van Deventer, J.S.J. (2005) Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates. Chem. Mater. 17 [11], 2976–2986. http://dx.doi.org/10.1021/cm050219i
27. Rees, C.A. Mechanisms and Kinetics of Gel Formation in Geopolymers, Ph.D. Thesis. University of Melbourne: Melbourne, Australia, 2007.
28. Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim. Acta 539, 23–33. http://dx.doi.org/10.1016/j.tca.2012.03.021
29. Hartman, J.S.; Sherriff, B.L. (1991) Silicon-29 MAS NMR of the aluminosilicate mineral kyanite: residual dipolar coupling to aluminum-27 and nonexponential spin-lattice relaxation. J. Phys. Chem. 95 [20], 7575–7579. http://dx.doi.org/10.1021/j100173a005
30. Occelli, M.L.; Voigt, U.; Eckert, H. (2004) The use of solid state nuclear magnetic resonance (NMR) to study the effect of composition on the properties of equilibrium fluid cracking catalysts (FCCs). Appl Catal. A 259, 245–251. http://dx.doi.org/10.1016/j.apcata.2003.09.032
31. Rakiewicz, E.F.; Mueller, K.T.; Jarvie, T.P.; Sutovich, K.J.; Roberie, T.G.; Peters, A.W. (1996) Solid-state NMR studies of silanol groups in mildly and highly dealuminated faujasites. Microporous Mater. 7, 81–88. http://dx.doi.org/10.1016/0927-6513(96)00031-4
32. Behera, B.; Ray, S.S. (2009) Structural changes of FCC catalyst from fresh to regeneration stages and associated coke in a FCC refining unit: A multinuclear solid state NMR approach. Catal. Today 141 [1], 195–204. http://dx.doi.org/10.1016/j.cattod.2008.03.017
33. Duxson, P.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. (2005) The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44 [4], 832–839. http://dx.doi.org/10.1021/ie0494216
34. Merwin, L.H.; Sebald, A.; Rager, H.; Schneider, H. (1991) 29Si and 27Al MAS NMR spectroscopy of mullite. Phys. Chem. Miner. 18, 47–52. http://dx.doi.org/10.1007/BF00199043
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.