Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum


  • M. E. Bazaldúa-Medellín Cinvestav Unidad Saltillo
  • A. F. Fuentes Cinvestav Unidad Saltillo
  • A. Gorokhovsky Saratov State Technical University
  • J. I. Escalante-García Cinvestav Unidad Saltillo




Supersulphated, C-S-H, Ettringite, hydration, microstructures


The hydration, strength development and composition of hydration products of supersulphated cements were characterized from the first 48 hours up to 360 days. Two compositions of 80% Blast furnace slag, 10–15% Fluorgypsum and 10–5% Portland cement were cured in dry and wet conditions. The main hydration products were ettringite and C-S-H since the first hours and up to 360 days as evidenced by X-ray diffraction, thermal analysis and electron microscopy. The strength was favored by higher fluorgypsum contents and lower Portland cement contents. These cements generated heats of hydration of 40–57 KJ/Kg after 28 hours, which are lower than portland cement.


Download data is not yet available.


1. Escalante García, J.I. (2002) Alternative materials to Portland cement (in Spanish). Avance y perspectiva. 21, 79–88.

2. Gartner, E. (2004) Industrially interesting approaches to "low-CO2" cements. Cem Concr Res. 34, 1489–98. http://dx.doi.org/10.1016/j.cemconres.2004.01.021

3. Mehrotra, V.P.; Sai, A.S.R.; Kapur, P.C. (1982) Plaster of Paris Activated Supersulphated Slag Cement. Cem Concr Res. 12, 463–473. http://dx.doi.org/10.1016/0008-8846(82)90061-8

4. Taylor, H.F.W. (1997) Cement Chemistry, Academic Press, Inc New York.

5. Gruskovnjak, A.; Lothenbach, B.; Winnefeld, F.; Figi, R.; Ko, S.C.; Adler, M.; Mäder, U. (2008) Hydration mechanisms of super sulphated slag cement. Cem Concr Res. 38, 983–992. http://dx.doi.org/10.1016/j.cemconres.2008.03.004

6. Fernández Jiménez, A.; Puertas, F.; Fernández Carrasco, L. (1996) Alkaline-sulphate activation processes of a spanish blast furnace slag. Mater. Construcc. 46 [241], 23–37.

7. Ko, S.C. (2002) Alcali activated supersulphated blinder. United States Patent. Patent N°: US 6,409,819 B1.

8. Hewlett, P.C. (2004) Leaś Chemistry of Cement and Concrete, Elsevier Science & Technology Books Publishing.

9. Midgley, H.G.; Pettifer, K. (1971) The micro structure of hydrated super sulphated cement. Cem Concr Res. 1, 101–104. http://dx.doi.org/10.1016/0008-8846(71)90086-X

10. Bijen, J.; Niël, E. (1981) Supersulphated cement from blastfurnace slag and chemical gypsum available in the Netherlands and neighbouring countries. Cem Concr Res. 11, 307–322. http://dx.doi.org/10.1016/0008-8846(81)90104-6

11. Erden, E.; Ölmez, H. (1993) The mechanical properties of supersulphated cement containing phosphogypsum. Cem Concr Res. 23, 115–121. http://dx.doi.org/10.1016/0008-8846(93)90141-U

12. O´Rourke, B.; McNally, C.; Richardson, M.G. (2009) Development of calcium sulfate-ggbs-Portland cement binders. Constr and Build Mat. 23, 340–346. http://dx.doi.org/10.1016/j.conbuildmat.2007.11.016

13. Kondo, R.; Daimon, M.; Song, C.; Jinawath, S. (1980) Effect of lime on the hydration of super-sulfated slag cement. American Ceramic Society Bulletin. 59 [8], 848–851.

14. Norma ASTM C309-94. Standard practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency.

15. Escalante García, J.I.; Sharp, J.H. (2000) The effect of temperature on the early hydration of Portland cement and blended cements. Adv Cement Res. 12 [3], 121–130. http://dx.doi.org/10.1680/adcr.2000.12.3.121

16. Magallanes Rivera, R.X.; Escalante García, J.I.; Gorokovsky, A. (2009) Hydration reactions and microstructural characteristics of hemihydrate with citric and malic acid. Constr Build Mat. 23, 1298–1305. http://dx.doi.org/10.1016/j.conbuildmat.2008.07.022

17. Shi, C.; Day, R.L. (1996) Some factors affecting early hydration of alkali-slag cements. Cem Concr Res. 26 [3], 439–447. http://dx.doi.org/10.1016/S0008-8846(96)85031-9

18. Matscei, T.; Lothenbach, B.; Glasser, P.F. (2007) Thermodynamics properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H20. Cem Concr Res. 37, 1379–1410. http://dx.doi.org/10.1016/j.cemconres.2007.06.002

19. Martínez Aguilar, O.A.; Castro Borges, P.; Escalante García, J.I. (2010) Hydraulic binders of fluorgypsum-portland and blast furnace slag, stability and mechanical properties. Constr Build Mat. 24, 631–639. http://dx.doi.org/10.1016/j.conbuildmat.2009.11.006

20. Escalante García, J.I.; F. Fuentes, A.; Gorokhovsky, A.; Fraire Luna, P.E.; Mendoza Suarez, G. (2003) Hydration products and reactivity of blast-furnace slag activated by various alkalis. J. Am. Ceram Soc. 86 [12], 2148–2153. http://dx.doi.org/10.1111/j.1151-2916.2003.tb03623.x

21. Matschei, T.; Bellmann, F.; Stark, J. (2000) Hydration behavior of sulphate-activated slag cements. Adv. Cem. Res. 18 [5], 167–178.

22. Odler, I. (2000) Special Inorganic Cements, E & FN Spon.

23. Gomez Zamorano, L.Y. (2004) Geothermal waste as a replacement material of portland cement pastes. PhD Thesis, Metallurgical and Ceramic Engineering. Cinvestav Unidad Saltillo, Mexico.

24. Escalante Garcia, J.I.; Sharp, J.H. (2004) The chemical composition and microstructure of hydration products in blended cements. Cem Concr Comp. 26, 967–976. http://dx.doi.org/10.1016/j.cemconcomp.2004.02.036

25. Shi, C.; Fernández Jiménez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem Concr Res. 41, 750–763. http://dx.doi.org/10.1016/j.cemconres.2011.03.016

26. Escalante García, J.I.; Sharp J.H. (1999) Variation in the composition of C-S-H gel in Portland cement pastes cured at various temperatures. J. Am. Ceram. Soc. 82 [11], 3237–3241. http://dx.doi.org/10.1111/j.1151-2916.1999.tb02230.x



How to Cite

Bazaldúa-Medellín, M. E., Fuentes, A. F., Gorokhovsky, A., & Escalante-García, J. I. (2015). Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum. Materiales De Construcción, 65(317), e043. https://doi.org/10.3989/mc.2015.06013



Research Articles