Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates


  • J. Carbajo Department of Physics, Systems Engineering and Signal Theory, University of Alicante
  • T. V. Esquerdo-Lloret Instituto de Diseño para la Fabricación y Producción Automatizada, Universitat Politècnica de Valencia
  • J. Ramis Department of Physics, Systems Engineering and Signal Theory, University of Alicante
  • A. V. Nadal-Gisbert Instituto de Tecnología de Materiales, Universitat Politècnica de Valencia
  • F. D. Denia Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de Valencia



Acoustic impedance, Absorption coefficient, Porous concrete, Lightweight aggregates


The use of sustainable materials is becoming a common practice for noise abatement in building and civil engineering industries. In this context, many applications have been found for porous concrete made from lightweight aggregates. This work investigates the acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. These natural resources can still be regarded as sustainable since they can be recycled and do not generate environmentally hazardous waste. The experimental basis used consists of different type specimens whose acoustic performance is assessed in an impedance tube. Additionally, a simple theoretical model for granular porous media, based on parameters measurable with basic experimental procedures, is adopted to predict the acoustic properties of the prepared mixes. The theoretical predictions compare well with the absorption measurements. Preliminary results show the good absorption capability of these materials, making them a promising alternative to traditional porous concrete solutions.


Download data is not yet available.


1. Branco, F.G.; Godinho, L. (2013) On the use of lightweight mortars for the minimization of impact sound transmission. Constr. Build. Mater. 45, 184–191.

2. Tutikian, B.F.; Nunes, M.F.O.; Leal, L.C.; Marquetto, L. (2013) Hormigón ligero con agregado reciclado de EVA para atenuación del ruido de impacto. Mater. Construcc. 63 [310], 309–316.

3. Krezel, Z.A.; McManus, A.M.K. (2000) Recycled aggregate concrete sound barriers for urban freeways. Waste Management Series. 1, 884–892.

4. Kim, H.K.; Lee, H.K. (2010) Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl. Acoust. 71, 607–615.

5. Olek, J.; Weiss, W.J.; Neithalath, N. (2004) Concrete mixtures that incorporate inclusion to reduce the sound generated in Portland cement concrete pavements. Final report SQDH 2004-2. The Institute for Safe, Quite and Durable Highways. Purdue University Center for Advanced Cement-Based Materials Northwestern University.

6. Neithalath, N. (2004) Developement and characterization of acoustically efficient cementitious materials, Ph. D. Tesis, Purdue University.

7. Tiwari, V.; Shukla, A.; Bose, A. (2004) Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl. Acoust. 65, 263–275.

8. Losa, M.; Leandri, P.; Bacci, R. (2008) Mechanical and performance-related properties of asphalt mixes containing expanded clay aggregate. Transp. Res. Record. 23–30.

9. Freitas, E.; Mendonça, C.; Santos, J.A.; Murteira, C.; Ferreira, J.P. (2012) Traffic noise abatement: How different pavements, vehicle speeds and traffic densities affect annoyance levels. Transp. Res. Part D 17, 321–326.

10. EEA: "Noise in Europe 2014". Publications office of the European Union (2014). ISBN 978-92-9213-505-8.

11. Pacheco-Torgal, F. (2014) Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 51, 151–162.

12. Pacheco-Torgal, F.; Jalali, S. (2011) Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 25 [2], 575–581.

13. Glé, P.; Gourdon, E.; Arnaud, L. (2012) Modelling of the acoustical properties of hemp particles. Constr. Build. Mater. 37, 801–811.

14. Radonjanin, V.; Malešev, M.; Marinkovic´, S.; Al Malty, A.E.S. (2013) Green recycled aggregate concrete. Constr. Build. Mater. 47, 1503–1511.

15. Chen, S.H.; Wang, H.Y.; Jhou, J.W. (2013) Investigating the properties of lightweight concrete containing high contents of recycled green building materials. Constr. Build. Mater. 48, 98–103.

16. Holmes, N.; Browne, A.; Montague, C. (2014) Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 73, 195–204.

17. D'Alessandro, F.; Asdrubali, F.; Baldinelli, G. (2014) Multi-parametric characterization of a sustainable lightweight concrete containing polymers derived from electric wires. Constr. Build. Mater. 68, 277–284.

18. Asdrubali, F.; Schiavoni, S.; Horoshenkov, K.V. (2012) A review of sustainable materials for acoustic applications. Building Acoustics. 19 [4], 283–312.

19. IMA Europe. Industrial Materials. "Vermiculite", web site:

20. Melo, M.O.B.C.; Bueno, L.; Coutinho, A.S.; Sousa, V.; Perazzo, N. (2012) Energy efficiency in building installations using thermal insulating materials in northeast Brazil. Energ. Buildings. 47, 35–43.

21. Hossain, K.M.A.; Ahmed, S.; Lachemi, M. (2011) Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Constr. Build. Mater. 25, 1186–1195.

22. Schackow, A.; Effting, C.; Folgueras, M.V.; Gu.ths, S.; Mendes, G.A. (2014) Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Constr. Build. Mater. 57, 190–197.

23. Palomar, I.; Barluenga, G.; Puentes, J. (2015) Lime–cement mortars for coating with improved thermal and acoustic performance. Constr. Build. Mater. 75, 206–314.

24. Attenborough, K. (1983) Acoustical characteristics of rigid fibrous absorbents and granular materials. J. Acoust. Soc. Am. 73 [3].

25. Miki, Y. (1990) Acoustical properties of porous materials – Generalizations of empirical models. J. Acoust. Soc. Jpn, 11 [1], 25–28.

26. Stinson, M.R.; Champoux, Y. (1992) Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries. J. Acoust. Soc. Am. 91 [2], 265–295.

27. Allard, J.F. (1992) New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 91 [6], 3346–3353.

28. Attenborough, K.; Bashir, I.; Taherzadeh, S. (2011) Outdoor ground impedance models. J. Acoust. Soc. Am. 129 [5], 2806–2819.

29. Swift, M.J.; Bris, P.; Horoshenkov, K.V. (1999) Acoustic absorption in re-cycled rubber Granulate. Appl. Acoust. 57, 203–212.

30. Horoshenkov, K.V.; Swift, M.J. (2001) The acoustic properties of granular materials with pore size distribution close to log-normal. J. Acoust. Soc. Am. 110 [5], 2371–2378.

31. Horoshenkov, K.V.; Hughes, D.C.; Cwirzen, A. (2003) The sound speed and attenuation in loose and consolidated granular formulations of high alumina cements. Appl. Acoust. 64, 197–212.

32. Vasina, M.; Hughes, D.D.; Horoshenkov, K.V.; Lapcik Jr, L. (2006) The acoustical properties of consolidated expanded clay granulates. Appl. Acoust. 647, 787–796.

33. AENOR: UNE-EN 933-2:1996. Ensayo para determinar las propiedades geométricas de los áridos. Parte 2: Determinación de la granulometría de las partículas. Tamices de ensayo, tama-o nominal de las aberturas, Madrid (1996), ICS 91.100.15-30.

34. AENOR: UNE-EN 196-1:2005. Métodos de ensayo de cementos. Parte 1: Determinación de resistencias mecánicas, Madrid (2005), ICS 91.100.10.

35. Brown, R.J.S. (1980) Connection between formation factor of electrical resistivity and fluid-solid coupling factor in Biot's equation for acoustic waves in fluid-filled porous media. Geophys. 45, 1269–1275.

36. ISO 9053:1991. Acoustics - Materials for acoustical applications - Determination of airflow resistance, (1991), ICS 91.100.60.

37. Ingard, K.U.; Dear, T.A. (1985) Measurement of acoustic flow resistances. J. Sound Vib. 103 [4], 567–572.

38. Leclaire, P.; Swift, M.J.; Horoshenkov, K.V. (1998) Determining the specific area of porous acoustic materials from water extraction data. Appl. Phys. 84 [12], 6886–6890.

39. AENOR: UNE-EN ISO 10534-2:2002. Acústica. Determinación del coeficiente de absorción acústica y de la impedancia acústica en tubos de impedancia. Parte 2: Método de la función de transferencia, Madrid (2002), ICS 17.140.01.

40. Geslain, A.; Groby, J.P.; Dazel, O.; Mahasaranon, S.; Horoshenkov, K.V.; Khan, A. (2012) An application of the Peano series expansion to predict sound propagation in materials with continuous pore stratification. J. Acoust. Soc. Am. 132 [1], 208–215.

41. Ramis, J.; del Rey, R.; Alba, J.; Godinho, L.; Carbajo, J. (2014) A model for acoustic absorbent materials derived from coconut fiber. Mater. Construcc. 64 [313].

42. Nelder, J.A.; Mead, R. (1965) A simpex method for function minimization. Comput. J. 7, 308–313.



How to Cite

Carbajo, J., Esquerdo-Lloret, T. V., Ramis, J., Nadal-Gisbert, A. V., & Denia, F. D. (2015). Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. Materiales De Construcción, 65(320), e072.



Research Articles