Contribuciones al estudio de la porosidad de geopolímeros basados en cenizas volantes. Relación entre grado de reacción, porosidad y resistencia a compresión
DOI:
https://doi.org/10.3989/mc.2016.10215Palabras clave:
Ceniza volante, Escoria de alto horno, Cemento activado alcalinamente, Resistencia a la compresión, Distribución de tamaño de poroResumen
La principal contribución de este documento es el desarrollo de un estudio sistemático implicando una serie de parámetros que podrían afectar a las propiedades de los geopolímeros: temperatura de curado, solución activadora, metal alcalino de la solución, incorporación de escorias (fuente de calcio) y tipo de escorias. Se han evaluado: microestructura, grado de reacción, porosidad y resistencia a compresión. Los geopolímeros preparados con silicatos presentaron un microestructura más densa y compacta, una mayor cantidad del gel geopolimérico, menor porosidad y mejores propiedades mecánicas que los preparados con hidróxidos. Los geopolímeros preparados con sales de sodio fueron más porosos pero más resistentes que los preparados con sales potasio. Aunque existe una relación inversa entre el grado de reacción y la porosidad, en algunos casos, la relación entre resistencia y porosidad es inexistente ya que puede estar enmascarada por cambios producidos por otros parámetros que afecten a la reacción.
Descargas
Citas
WWCCPN. World-Wide Coal Combustion Products Network. http://www.wwccpn.org/ (2011) Last access: 2011.
Davidovits, J. (1991) Geopolymers: inorganic polymeric new materials. J. Therm. Anal. 37, 1633–1656 https://doi.org/10.1007/bf01912193
Davidovits, J. (2005) The Poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry, Geopolymer chemistry and sustainable development, Proceedings of the World Congress Geopolymer, Perth, Australia (2005).
Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lukey, G.C. (2002) The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem. Eng. J. 89, 63–73 https://doi.org/10.1016/S1385-8947(02)00025-6
Xu, J.Z.; Zhou, Y.L.; Chang, Q.; Qu, H.Q. (2006) Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers. Mater. Lett. 60, 820–822 https://doi.org/10.1016/j.matlet.2005.10.019
Izquierdo, M.; Querol, X.; Davidovits, J.; Antenucci, D.; Nugteren, H.; Fernández-Pereira, C. (2009) Coal fly ash-slag-based geopolymers: Microstructure and metal leaching. J. Hazar. Mater. 166 [1], 561–566 https://doi.org/10.1016/j.jhazmat.2008.11.063
PMid:19118943
Izquierdo, M.; Querol, X.; Phillipart, C.; Antenucci, D.; Towler, M. (2010) The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. J. Hazar. Mater. 176 [1–3], 623–628 https://doi.org/10.1016/j.jhazmat.2009.11.075
PMid:20005626
Davidovits J. (2005) In Proceedings of the World Congress Geopolymer, Saint Quentin, France, 28 June–1 July pp. 9–15 (2005).
Sindhunata, Van Deventer, J.S.J.; Lukey, G.C.; Xu, H. (2006) Effect of curing temperature and silicate concentration on fly ash-based geopolimerization. Ind. Eng. Chem. Res. 45, 3559–3568 https://doi.org/10.1021/ie051251p
Trochez, J.J.; Mejía de Gutiérrez, R.; Rivera, J.; Bernal, S.A. (2015) Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Mater. Construcc. 65 [317].
Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Provis, J.L. (2015) Performance at high temperature of alkali-activated slag pastes produce with silica fume and rice husk based activators. Mater. Construcc. 65 [318] e049 https://doi.org/10.3989/mc.2015.03114
Palomo, A.; Grutzeck, M.W.; Blanco, M.T. (1999) Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 29 [8], 1323–1329 https://doi.org/10.1016/S0008-8846(98)00243-9
Provis, J.L.; Van Deventer, J.S.J. (2009) Geopolymers. Structures, processing, properties and industrial applications, Woodhead publishing Limited and CRC press LLC, (2009).
Lloyd, R.R.; Provis, J.L.; Smeaton, K.J.; Van Deventer, J.S.J. (2009) Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood's metal intrusion. Micropor. Mesopor. Mater. 126, 32–39 https://doi.org/10.1016/j.micromeso.2009.05.016
Diamond, S. (2000) Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30, 1517–1525 https://doi.org/10.1016/S0008-8846(00)00370-7
Webb, P.A.; Orr, C. (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross, Ga USA (1997).
Zhang, Z.; Xiao, Y.; Huajun, Z. (2010) Potential application of geopolymers as protection coatings for marine concrete. II. Microstructure and anticorrosion mechanism. Appl. Clay. Science. 49 [1–2], 7–12 https://doi.org/10.1016/j.clay.2010.04.024
Smilauer, V.; Hlavacek, P.; Skvara, F.; Sulc, R.; Kopecky, L.; Nemecek, J. (2011) Micromechanical multiscale model for alkali activation of fly ash and metakaolin. J. Mater. Sci. 46 [20], 6545–6555 https://doi.org/10.1007/s10853-011-5601-x
Kong, D.; Sanjayan, J.G.; Sagoe-Crentsil, K. (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37 [12], 1583–1589 https://doi.org/10.1016/j.cemconres.2007.08.021
Park, S-S.; Kang, H-Y. (2006) Strength and microscopic characteristics of alkali-activated fly ash-cement. J. Chem. Eng. 23 [3], 367–373 https://doi.org/10.1007/bf02706736
Sindhunata; Provis, J.L.; Lukey, G.C.; Xu, H.; Van Deventer, J.S.J. (2008) Structural evolution of fly ash-based geopolymers in alkaline environments. Ind. Eng. Chem. Res. 47, 2991–2999.
Provis, J.L.; Myers, R.J.; White, C.E.; Rose, V.; Van Deventer, J.S.J. (2012) X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42, 855–864 https://doi.org/10.1016/j.cemconres.2012.03.004
Li, Z.; Liu, S. (2007) Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer. J. Mater. Civil. Eng. 19 [6], 470–474 https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(470)
Ma, Y.; Hu, J.; Ye, G. (2012) Effect of activating solution on mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash. J. Mater. Sci. 47 [11], 4568–4578 https://doi.org/10.1007/s10853-012-6316-3
Pan, Z.; Feng, K-N.; Gong, K.; Korayem, A.H.; Sanjayan, J.; Duan, W-H.; Collins, F. (2013) Damping and microstructure of fly ash-based geopolymers. J. Mater. Sci. 48, 3128–3137 https://doi.org/10.1007/s10853-012-7090-y
Bhowmick, A.; Ghosh, S. (2012) Effect of synthesizing parameters on workability and compressive strength of Fly ash based geopolymer mortar. Int. J. Civil. Struct. Eng. 3 [1], 168–177.
Duxson, P.; Lukey, G.C.; Separovic, F.; Van Deventer, J.S.J. (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44 [4], 832–839 https://doi.org/10.1021/ie0494216
Van Jaarsveld, J.G.S.; Van Deventer, J.S.J. (1999) The effect of the alkali metal activator on the properties of fly ash based geopolymers. Ind. Eng. Chem. Res. 38 [10], 3932–3941 https://doi.org/10.1021/ie980804b
Phair, J.W.; Van Deventer, J.S.J. (2002) Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process. 66, 121–143 https://doi.org/10.1016/S0301-7516(02)00013-3
Phair, J.W.; Van Deventer, J.S.J. (2001) Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner. Eng. 14 [3], 289–304 https://doi.org/10.1016/S0892-6875(01)00002-4
Kim, J.T.; Seo, D.S.; Kim, G.J.; Lee, J.K. (2010) Influence of alkaline-activator content on the compressive strength of aluminosilicate-based geopolymer. J. Korean. Ceram. Soc. 47 [3], 216–222 https://doi.org/10.4191/KCERS.2010.47.3.216
Abdul Rahim, R.H.; Rahmiati, T.; Azizli, K.A.; Man, Z.; Nuruddin, M.F.; Ismail, L. (2015) Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties. Mater. Sci. Forum. 803 (Geopolymer and Green Technology Materials), 179–184.
Nugteren, H.; Davidovits, J.; Antenucci, D.; Fernández Pereira, C.; Querol, X. (2005) Geopolymerization of fly ash. In Proceedings in Word of Coal Ash Conference, (2005).
ASTM D-3682-78. "Major and Minor Elements in Coal and Coke Ash by atomic Absorption.
Arjuan, P.; Silbee, M.R.; Roy, D.M. (1997) Quantitative determination of the crystalline and amorphous phases in low calcium fly ash. In: Proceedings of the 10th international congress of the chemistry of cement, Gothenburg, Sweeden, 3, 2–6 (1997). ISBN: 9163054973 9789163054976
Fernández-Jiménez, A.; Palomo, A.; Criado, M. (2005) Microstructure development of alkali activated Fly ash cement: a descriptive model. Cem. Concr. Res. 35, 1204–1209 https://doi.org/10.1016/j.cemconres.2004.08.021
Fernández-Jiménez, A.; de la Torre, A.G.; Palomo, A.; López-Olmo, G.; Alonso, M.M.; Aranda, M.A.G. (2006) Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. Fuel. 85, 1960–1969 https://doi.org/10.1016/j.fuel.2006.04.006
Luna Galiano, Y.; Fernández Pereira, C.; Pérez, C.M.; Suarez, P. (2016) Influence of BFS content in the mechanical properties and acid attack resistance on fly ash based geopolymers. Key. Eng. Mat. 663, 50–61. (Processing ceramics from waste: A new raw material source for a global change)
https://doi.org/10.4028/www.scientific.net/KEM.663.50
ASTM C39/C39 M-05e2. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
Liabastre, A.A.; Orr. C. (1978) An evaluation of pore structure by mercury penetration. J. Colloid. Interf. Sci. 14 [1], 1–18 https://doi.org/10.1016/0021-9797(78)90329-6
Ellison, A.H.; Kleman, R.B.; Schwartz, A.M.; Grubb, L.S.; Pretash. D.A. (1967) Contact angles of mercury on carious surfaces and the effect of temperature. J. Chem. Eng. Data. 12 [4], 607–609 https://doi.org/10.1021/je60035a037
Fernández-Jiménez, A.; Palomo, A. (2003) Characterization of fly ashes. Potential reactivity as alkaline cements. Fuel. 82 [8], 2259–2265 https://doi.org/10.1016/S0016-2361(03)00194-7
Palomo, A.; Krivenko, P.; García-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022 https://doi.org/10.3989/mc.2014.00314
Yip, C.K.; Luckey, C.G.; Provis, J.L.; Van Deventer, J.S.J. (2008) Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38 [4], 554–564 https://doi.org/10.1016/j.cemconres.2007.11.001
Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. (2005) The coexistence of the geopolymeric gel and calcium silicate hydrated at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697 https://doi.org/10.1016/j.cemconres.2004.10.042
Sindhunata. (2006) The mechanisms and kinetics of fly ash based geopolymerization. Ph.D. Thesis of University of Melbourne. Australia.
Kriven, W.M.; Bell, J.L. (2004) Effect of alkali choice on geopolymer properties. Ceram. Eng. Sci. Proc. 25 [3–4], 99–104 https://doi.org/10.1002/9780470291191.ch16
Puligilla, S.; Mondal, P. (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res. 43, 70–80 https://doi.org/10.1016/j.cemconres.2012.10.004
Kang, H-J.; Ryu, G-S.; Koh, G-T.; Kang, S-T.; Park, J-J. (2011) Relationship between microscopic structures and compressive strength of alkali-activated fly ash mortar. Key Eng. Mat. 452–453 (Advances in Fracture and Damage Mechanics IX), 737–740.
Nemecek, J.; Smilauer, V.; Kopecky, L.; Nemeckova, J. (2010) Nanoindentation of alkali-activated fly ash. Transp. Res. Record. 2141 (Nanotechnology in Cement and Concrete 2010, Volume 1) 36–40.
Young, J.F.; Mindess, S.; Darwin, D. (2002) Concrete. Prentice Hall, Upper Saddle River (2002).
Fernández-Jiménez, A.; Palomo, A.; Criado, M. (2006) Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Mater. Construcc. 56 [281], 51–65.
Kovalchuck, G.; Fernández-Jiménez, A.; Palomo, A. (2008) Alkali activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Mater. Construcc. 58 [291], 35–52.
Khale, D.; Chaudhary, R. (2007) Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42 [3], 729–746 https://doi.org/10.1007/s10853-006-0401-4
Wang, J.; Wu, X-L.; Wang, J-X.; Liu, C-Z.; Lai, Y-M.; Hong, Z-K.; Zheng, J-P. (2012) Hydrothermal synthesis and characterization of alkali-activated slag-fly ashmetakaolin cementitious materials. Micropor. Mesopor. Mater. 155, 186–191 https://doi.org/10.1016/j.micromeso.2012.01.016
Mu-iz-Villarreal, M.S.; Manzano-Ramírez, A.; Sampieri- Bulbarela, S.; Gasca-Tirado, R.J.; Reyes-Araiza, J.L.; Rubio-Ávalos, J.C.; Pérez-Bueno, J.J.; Apatiga, L.M.; Zaldivar-Cadena, A.; Amigó-Borrás, V. (2011) The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater. Lett. 65 [6], 995–998 https://doi.org/10.1016/j.matlet.2010.12.049
Kamseu, E.; Bignozzi, M.C.; Melo, U.C.; Leonelli, C.; Sglavo, V.M. (2013) Design of inorganic polymer cements: Effects of matrix strengthening on microstructure. Constr. Build. Mater. 38, 1135–1145 https://doi.org/10.1016/j.conbuildmat.2012.09.033
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.