Properties of fly ash and metakaolín based geopolymer panels under fire resistance tests
DOI:
https://doi.org/10.3989/mc.2015.06114Keywords:
Fly ash, Metakaolin, Mechanical properties, Pore size distribution, TemperatureAbstract
This paper presents the results of a study about the effect of fire on geopolymer paste composed of fly ashes, metakaolin and sodium silicate. 2 cm thick, 28 cm high and 18 cm wide panels were filled with the paste obtained. After 28 days of curing at 20 °C and 45% of relative humidity, different tests were carried out in the geopolymers: physico-chemical (density, water absorption, porosity), mechanical (flexural and compressive strength), fire resistance and environmental (leaching and radioactivity). The panels manufactured have been compared with other commercial panels in order to determine the recycling possibilities of fly ashes in manufacturing new fire-insulating geopolymers. The panels obtained can be utilized for the production of interior wall materials, with a good physical, mechanical, fire resistant properties without any environmental problem.
Downloads
References
1. González, A.; Navia, R.; Moreno, N. (2009) Fly ashes from coal and petroleum coke combustion: current and innovative potential applications. Waste. Manage. Res. 27, 976–987. http://dx.doi.org/10.1177/0734242x09103190
2. Anderson, M.; Jones, R.; McCarthy, M. (2008) Established uses of combustion residues. In Combustion Residues. Current, Novel and Renewable Applications (Cox M, Nugteren H and Janssen-Jurkovicová M (eds)) Wiley and Sons Ltd. Chichester, England. http://dx.doi.org/10.1002/9780470094440.ch2
3. Ahmaruzzaman, M. (2010) A review on the utilization of fly ash. Progr. Energ. Combust. 36, 327–363. http://dx.doi.org/10.1016/j.pecs.2009.11.003
4. Davidovits, J. (1991) Geopolymers: inorganic polymeric new materials. J. Therm. Anal. 37, 1633–1656. http://dx.doi.org/10.1007/bf01912193
5. Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022. http://dx.doi.org/10.3989/mc.2014.00314
6. Duxson, P.; Provis, J.L.; Lukey, G.C.; Van Deventer, J.S.J. (2007) The role of inorganic polymer technology in the development of 'green concrete'. Cem. Concr. Res. 37, 1590–1597. http://dx.doi.org/10.1016/j.cemconres.2007.08.018
7. Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lorenzen, L. (1997) The potencial use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Miner. Eng. 10 [7], 659–669. http://dx.doi.org/10.1016/S0892-6875(97)00046-0
8. Bakharev, T. (2005) Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 35 [4], 658–670. http://dx.doi.org/10.1016/j.cemconres.2004.06.005
9. Davidovits, J. (1994) Properties of geopolymers cements. In: Proceedings of First International Conference on Alkaline Cements and Concretes (Krivenko P (ed)). Kiev, Ukraine. 131–149.
10. Sindhunata. (2006) The mechanisms and kinetics of fly ash based geopolymerization. Ph.D. Thesis of University of Melbourne. Australia.
11. Van Deventer, J.S.J.; Lukey, G.C.; Xu, H. (2006) Effect of curing temperature and silicate concentration on fly ash-based geopolimerization. Ind. Eng. Chem. Res. 45, 3559–3568. http://dx.doi.org/10.1021/ie051251p
12. Duxson, P.; Mallicoat, S.W.; Lukey, G.C.; Kriven, W.M.; Van Deventer, J.S.J. (2007) The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids. Surfaces. A. 292, 8–20. http://dx.doi.org/10.1016/j.colsurfa.2006.05.044
13. Palomo, A.; Blanco-Varela, M.T.; Granizo, M.L.; Puertas, F.; Vazquez, T.; Grutzek, M.W. (1999) Chemical stability on cementitious materials based on metakaolin. Cem. Concr. Res. 29 [7], 997–1004. http://dx.doi.org/10.1016/S0008-8846(99)00074-5
14. Provis, J.L.; Duxson, P.; Van Deventer, J.S.J.; Lukey, G.C. (2005) The Role of Mathematical Modelling and Gel Chemistry in Advancing Geopolymer Technology. Chem. Eng. Res. Des. 83 [7], 853–860. http://dx.doi.org/10.1205/cherd.04329
15. Singh, P.S.; Trigg, M.; Burgar, I.; Bastow, T. (2005) Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR. Mater. Sci. Eng. A. 396 [1–2], 392–402. http://dx.doi.org/10.1016/j.msea.2005.02.002
16. Xu, H.; Van Deventer, J.S.J. (2003) Effect of source materials on geopolymerisation. Ind. Eng. Chem. Res. 42, 1698–1706. http://dx.doi.org/10.1021/ie0206958
17. Van Jaarsveld, J.G.S.; Van Deventer, J.S.J. (1999) The effects of metal contaminants on the formation and properties of waste-based geopolymers. Cem. Concr. Res. 29 [8], 1189–1200. http://dx.doi.org/10.1016/S0008-8846(99)00032-0
18. Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Schwartzman, A. (1999) The potencial use of geopolymeric materials to immobilise toxic metals: Part II. Materials and leaching characteristics. Miner. Eng. 12 [1], 75–91. http://dx.doi.org/10.1016/S0892-6875(98)00121-6
19. Bankowski, P.; Zou, L.; Hodges, R. (2004) Reduction of metal leaching in brown coal fly ash using geopolymers. J. Hazard. Mater. 114 [1–3], 59–67. http://dx.doi.org/10.1016/j.jhazmat.2004.06.034 PMid:15511575
20. Bankowski, P.; Zou, L.; Hodges, R. (2004) Using inorganic polymer to reduce leach rates of metals from brown coal fly ash. Miner. Eng. 17, 159–166. http://dx.doi.org/10.1016/j.mineng.2003.10.024
21. Wu, H-C.; Sun, P. (2007) New building materials from fly ash-based lightweight inorganic polymer. Constr. Build. Mater. 21 [1], 211–217. http://dx.doi.org/10.1016/j.conbuildmat.2005.06.052
22. Swanepoel, J.C.; Strydom, C.A. (2002) Utilization of fly ash in a geopolymeric material. Appl. Geochem. 17, 1143–1148. http://dx.doi.org/10.1016/S0883-2927(02)00005-7
23. Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lorenzen, L. (1998) Factors affecting the immobilisation of metals in geopolymerized fly ash. Metall. Mater. Trans. B 29, 659–669/283–291. http://dx.doi.org/10.1007/s11663-998-0032-z
24. Davidovits, J. (1991) Geopolymers: inorganic polymeric new materials. J. Therm. Anal. 37, 1633–1656. http://dx.doi.org/10.1007/bf01912193
25. Lyon, R.E.; Balaguru, P.N.; Foden, A.; Sorathia, U.; Davidovits, J.; Davidovits, M. (1997) Fire-resistant aluminosilicate composites. Fire Mater. 21 [2], 67–73. http://dx.doi.org/10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N
26. Duxson, P.; Lukey, G.C.; Van Deventer, J.S.J. (2006) Thermal evolution of metakaolin geopolimer: part 1-physical evolution. J. Non-Cryst. Solids. 352 [52–54], 5541–5555. http://dx.doi.org/10.1016/j.jnoncrysol.2006.09.019
27. Zuda, L.; Rovnaník, P.; Bayer, P.; Cerny, R. (2007) Thermal Properties of Alkali-activated Slag Subjected to High Temperatures. J. Build. Phys. 30, 337–350. http://dx.doi.org/10.1177/1744259106075234
28. Pan, Z.; Sanjayan, J.G. (2010) Stress–strain behaviour and abrupt loss of stiffness of geopolymer at elevated temperatures. Cem. Concr. Comp. 32, 657–664. http://dx.doi.org/10.1016/j.cemconcomp.2010.07.010
29. Kong, D.; Sanjayan, J.G.; Sagoe-Crentsil, K. (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37 [12], 1583–1589. http://dx.doi.org/10.1016/j.cemconres.2007.08.021
30. Kong, D.; Sanjayan, J.G. (2008) Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Comp. 30 [10], 986–91. http://dx.doi.org/10.1016/j.cemconcomp.2008.08.001
31. Dombrowski, K.; Buchwald, A.; Weil, M. (2007) The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci. 42 [3], 3033–3043. http://dx.doi.org/10.1007/s10853-006-0532-7
32. Zhang, Y.J.; Li, S.; Wang, Y.C.; De Long, X. (2012) Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature. J. Non-Cryst. Solids. 358 [3], 620–624. http://dx.doi.org/10.1016/j.jnoncrysol.2011.11.006
33. Rovnaník, P.; Bayer, P.; Rovnaníková, P. (2013) Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mater. 47, 1479–1487. http://dx.doi.org/10.1016/j.conbuildmat.2013.06.070
34. Peng, G-F.; Huang, Z-S. (2008) Change in microstructure of hardened cement paste subjected to elevated temperatures. Constr. Build. Mater. 22 [4], 593–599. http://dx.doi.org/10.1016/j.conbuildmat.2006.11.002
35. Cheng, T.W.; Chiu, J.P. (2003) Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering 16, 205–210. http://dx.doi.org/10.1016/S0892-6875(03)00008-6
36. Duxson, P.; Lukey, G.C.; Van Deventer, J.S.J. (2006) Thermal Conductivity of Metakaolin Geopolymers Used as a First Approximation for Determining Gel Interconnectivity. Ind. Eng. Chem. Res. 45 [23], 7781–7788. http://dx.doi.org/10.1021/ie060187o
37. Vilches, L.F.; Leiva, C.; Vale, J.; Fernández Pereira, C.; Olivares, J. (2005) Coal Fly Ash-Containing Sprayed Mortar for Passive Fire Protection of Steel Sections. Mater. Construcc. 55, 25–37. http://dx.doi.org/10.3989/mc.2005.v55.i279.196
38. Leiva, C.; Vilches, L.F.; Fernández Pereira, C.; Vale, J. (2005) Influence of the type of ash on the fire resistance characteristics of ash–enriched mortars. Fuel. 84, 1433–1439. http://dx.doi.org/10.1016/j.fuel.2004.08.031
39. Madani, A.; Aznar, A.; Sanz, J.; Serratosa, J.M. (1990) Silicon-29 and aluminum-27 NMR study of zeolite formation from alkali-leached kaolinites: influence of thermal preactivation. J. Phys. Chem. 94 [2], 760–765. http://dx.doi.org/10.1021/j100365a046
40. EN (2000) 197-1: Cement - Part 1: Composition, specifications and conformity criteria for common cements. European committee for standarisation. Brussels, Belgium.
41. ASTM (2005) C 618-05, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, USA.
42. Arjuan, P.; Silbee, M.R.; Roy, D.M. (1997) Quantitative determination of the crystalline and amorphous phases in low calcium fly ash. In: Proceedings of the 10th international congress of the chemistry of cement, Gothenburg, Sweeden, 3, 2–6. ISBN: 9163054973 9789163054976.
43. Fernández-Jiménez, A.; Palomo, A. (2003) Characterization of fly ashes. Potential reactivity as alkaline cements. Fuel. 82 [8], 2259–2265. http://dx.doi.org/10.1016/S0016-2361(03)00194-7
44. Luna, Y.; Cornejo, A.; Leiva, C.; Fernández Pereira, C.; Vilches, L. (2012) Fire resistance of geopolymers with fly ashes and metakaolin as aluminosilicate sources. In: Proceeding of the International Congress of Chemical Engineering ANQUE 2012. ISBN: 978-84-695-3536-3.
45. Luna, Y.; Fernández Pereira, C.; Vale, J. (2010) Waste Stabilization/Solidification (S/S) of Eaf Dust Using Fly Ash-Based Geopolymers. Influence of Carbonation on the Stabilized Solids. Coal. Combust. Gasification. Products. 2, 1–8.
46. EN (2001) 12859: Gypsum panels. Definitions, requirements and test methods. European committee for standarisation. Brussels, Belgium.
47. Lloyd, R.R.; Provis, J.L.; Smeaton, K.J.; Van Deventer, J.S.J. (2009) Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood's metal intrusion, Micropor. Mesopor. Mater. 126, 32–39. http://dx.doi.org/10.1016/j.micromeso.2009.05.016
48. Diamond, S. (2000) Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials, Cem. Concr. Res. 30, 1517–1525. http://dx.doi.org/10.1016/S0008-8846(00)00370-7
49. ASTM (1991) E 761-86: Compressive strength of the fire-resistive material applied to structural member. ASTM International, USA.
50. ASTM (2002) C 348-02: Standard test method for flexural strength and modulus of hydraulic cement mortars. ASTM International, USA.
51. EN (2000) 1363-1: Fire resistance test. Part 1: General requirements. European committee for standarisation. Brussels, Belgium.
52. Leiva, C.; García Arenas, C.; Vilches, L.F.; Vale, J.; Fernández Pereira, C. (2010) Use of FGD gypsum in fire resistant panels. Waste. Manage. 3, 1123–1129. http://dx.doi.org/10.1016/j.wasman.2010.01.028 PMid:20163949
53. Vilches, L.F.; Leiva, C.; Vale, J.; Fernández Pereira, C. (2005) Insulating capacity of fly ash pastes used for passive protection against fire. Cem. Concr. Comp. 27, 776–781. http://dx.doi.org/10.1016/j.cemconcomp.2005.03.001
54. NEN 7345 (1995) Determination of the Leaching of Inorganic Components from Building and Monolithic Waste Materials with the Diffusion Test. Leaching Characteristics of Soil and Stony Building and Waste Materials-Leaching test. Netherlands Normalisation Institute, Delft, The Netherlands
55. Nisnevich, M.; Sirotin, G.; Schlesinger, T.; Eshel, Y. (2008) Radiological safety aspects of utilizing coal ashes for production of lightweight concrete. Fuel. 87, 1610–1616. http://dx.doi.org/10.1016/j.fuel.2007.07.031
56. ECRP 112 (1999) Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials. European Commission Radiation Protection 112.
57. Smilauer, V.; Hlavacek, P.; Skvara, F.; Sulc, R.; Kopecky, L.; Nemecek, J. (2011) Micromechanical multiscale model for alkali activation of fly ash and metakaolin. J. Mater. Sci. 46 [20], 6545–6555. http://dx.doi.org/10.1007/s10853-011-5601-x
58. Ma, Y.; Hu, J.; Ye, G. (2012) Effect of activating solution on mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash. J. Mater. Sci. 47 [11], 4568–4578. http://dx.doi.org/10.1007/s10853-012-6316-3
59. Decree on Soil Quality. Staatsblad 2007. Besluit van 22 november 2007, houdende regels inzake de kwaliteit van de bodem (Besluit bodemkwaliteit). Staatsblad, 2007, nr 469.
60. ECRP 88 Recommendations for the Implementation of Title VII of the European Basic Safety Standards Directive (BSS) Concerning Significant Increase in Exposure due to Natural Radiation Sources. European Commission Radiation Protection 88 (1997).
61. Council Directive 96/29 (1996). Official Journal of the European Communities L159.
62. ICRP 29 Protection of the Public in Situations of Prolonged Radiation Exposure. Annals of the ICRP 29 (1–2), ICRP Pub. 82. New York, Pergamon Press (1999).
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.