The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars




Pozzolan, waste treatment, mortar, hydration products, compressive strength


This study investigated the effects of the addition of untreated sugarcane bagasse ash (UtSCBA) on the microstructural and mechanical properties of mortars. The SCBA was sieved for only five minutes through a No. 200 ASTM mesh, and fully characterized by chemical composition analysis, laser ray diffraction, the physical absorption of gas, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Mortar mixtures with 0, 10 and 20% UtSCBA as cement replacement and a constant 0.63 water/cementitious material ratio were prepared. Fresh properties of the mortars were obtained. The microstructural characteristics of the mortars at 1, 7, 28, 90 and 600 days were evaluated by SEM and XRD. The compressive strengths of the mortars at the same ages were then obtained. The results show that the addition of 10 and 20% UtSCBA caused a slight decrease in workability of the mortars but improved their microstructure, increasing the long-term compressive strength.


Download data is not yet available.


Worrell, E.; Price, L.; Martín, N.; Hendriks, C.; Ozawa, M.L. (2001) Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 26, 303–329.

Hendriks, C.A.; Worrell, E.; de Jager, D.; Blok, K.; Riemer, P. (2004) Emission reduction of greenhouse gases from the cement industry. Greenhouse gas control technologies Conference paper-cement.

International Energy Agency (IEA). Carbon emissions reduction up to 2050. World Business Council for Sustainable Development. Cement Technology Roadmap 2009.

Cement Industry Federation (CIF). Sustainability Report 2011.

Josa, A.; Aguado, A.; Cardim, A.; Byars, E. (2007) Comparative analysis of the cycle impact assessment of available cement inventories in the EU. Cem. Concr. Res. 37 [5], 781–788.

Ganesan, K.; Rajagopal, K.; Thangavel, K. (2007) Evaluation of bagasse ash supplementary cementitious material. Cem. Concr. Comp. 29 [6], 515–524.

Cordeiro, G.C.; Toledo-Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2008) Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Comp. 30 [5], 410–418.

Morales, E.V.; Villar-Coci-a, E.; Frías, M.; Santos, S.F.; Savastano, J.R.H. (2009) Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cem. Concr. Comp. 31 [1], 22–28.

Cordeiro, G.C.; Toledo-Filho, R.D.; Fairbairn, E.M.R. (2009)a Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construct. Build. Mat. 23 [10], 3301–3303.

Cordeiro, G.C.; Toledo-Fhilo, R.D.; Tavares, L.M.; Fairbair, E.M.R. (2009)b Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39 [2], 110–115.

Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. (2009)a Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Construct. Build. Mat. 23 [12], 3523–3531.

Bahurudeen, A.; Santhanam, M. (2015) Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem. Concr. Comp. 56, 32–45.

Frías, M.; Villar, E.; Svastano, H. (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Comp. 33, 490–496.

Dhengare S.; Amrodiya S.; Shelote M.; Asati A.; Bandwaf N.; Anand K.; Jichkar. (2015) Utilization of sugarcane bagasse ash as a supplementary cementitious material in concrete and mortar – a review. International Journal of Civil Engineering and Technology. 6 [4], 94–106.

Valencia, G.; Mejía de Gutierrez, R.; Barrera, J.; Delvasto, S. (2012) Estudio de durabilidad y corrosión en morteros armados adicionados con toba volcánica y ceniza de bagazo de ca-a de azúcar. Revista de la Construcción. 12 [22], 112–122.

Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. (2009)b Utilization of bagasse ash as a pozzolanic material in concrete. Construct. Build. Mat. 23 [11], 3352–3358.

Unión Nacional de Ca-eros A. C. de México. (2016). Viewed on July 13th 2016,

Akram, T.; Memon, S.A.; Obaid, H. (2009) Production of low-cost self-compacting concrete using bagasse ash. Construct. Build. Mat. 23 [2], 703–712.

Villar-Coci-a, E.; Valencia-Morales, E.; Gonzáles-Rodriguez, R,; Hernández-Ruiz, J. (2003) Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic-diffusive model. Cem. Concr. Res. 33 [4], 517–524.

Frías, M.; Villar-Coci-a, E.; Sanchez de Rojas, M.I.; Valencia-Morales, E. (2005) The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: Application of a diffusive model. Cem. Concr. Res. 35 [11], 2137–2142.

Bahurudeen, A.; Wani K.; Abdul B.M.; Santhanam, M. (2016) Assessment of pozzolanic performance of sugarcane bagasse ash. J. Mater. Civ. Eng. 28[2], 01–11. 1943-5533.0001361

Seong-Tae Y.; Eun-Ik Y.; Joong-Cheol C. (2006) Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design 236 [2], 115–127.

German, R M. (1994) Powder metallurgy Science. MPIF Princeton. USA, (1994).

Soares, M.M.N.S.; Poggiali, F.S.J.; Bezerra, A.C.S.; Figueiredo, R.B.; Aguilar, M.T.P.; Catlin, P.R. (2014) The effect of calcination conditions on the physical and chemical characteristics of sugar cane bagasse ash. REM: R. Esc. Minas, Ouro Petro. 67(1), 33–39.

Martirena, J.F.; Middendor, F.B; Gehrke, M; Budelmann, H. (1998) Use of wastes of the sugar industry in lime-pozzolana binders: Study of the reaction. Cem. Concr. Res. 28[11], 1525–1536.

Somna, R.; Jaturapitakkul, C.; Rattanachu, P.; Chalee, W. (2012) Effect of ground bagasse ash on mechanical and durability properties of recycled aggregated concrete. Materials and Design. 36, 597–603.

Batra, V.S.; Urbonaite, S.; Svensson, G. (2008) Characterization of unburned carbon in bagasse fly ash. Fuel. 87 [13-14], 2972–2976.

Martirena, F.; Middenford, B.; Day, R.L.; Gehrke, M.; Roque, P.; Martinez, L.; Betancourt S. (2006) Rudimentary, low-tech incinerators as a means to produce reactive pozzolan out of sugar cane straw. Cem. Concr. Res. 36 [6], 1056–1061.

Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2012) Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Construct. Build. Mat. 29, 641–646.

Chandara, C.; Sakai, E.;Azizli, K.A.M.; Ahmad, Z.A.; Hashim, S.F.A. (2010) The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer. Construct. Build. Mat. 24 [9], 1590–1593.

Jímenez-Quero, V.G.; León-Martínez, F.M.; Montes-García, P.; Gaona-Tiburcio, C.; Chacón-Nava, J.G. (2013) Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Construct. Build. Mat. 40, 691–701.

Diamond, S. (2004) The microstructure of cement paste and concrete--a visual primer. Cem. Concr. Comp. 26 [8], 919–933.

Giraldo, M.A.; Tobón, J.I. (2006) Mineralogical evolution of Portland cement during hydration process. Dyna. 73 [148], 69–81.

Torres, J.; Mejía de Gutiérrez, R.; Castelló, R.; Vizcaino, C. (2008) Proceso de hidratación depastas de OPC adicionadas con caolín tratado térmicamente. Revista Facultad de Ingeniería. Universidad de Antioquia. 43, 77–85.

Govindarajan, D.; Jayalakshmi, G. (2011) XRD, FIRT and SEM studies on calcined sugarcane bagasse ash blended cement. Archives of Physics Research. 2 [4], 38–44.

Hussein, A.A.E.; Shafiq, N.; Nuruddin, M.F.; Memon, F.A. (2014) Compressive strength and microstructure of sugar cane bagasse ash concrete. Research Journal of Applied Sciences, Engineering and Technology. 7 [12], 2569–2577.

Richardson, I.G. (2008) The calcium silicate hydrates. Cem. Concr. Res. 38 [2], 137–158.

Arizzi, A.; Cultrone, G. (2012) Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: A mineralogical, textural and physical-mechanical study. Construct. Build. Mat. 31, 135–143.

Sisomphon, K.; Franke, L. (2011) Evaluation of calcium hydroxide contents in pozzolanic cement pastes by a chemical extraction method. Construct. Build. Mat. 25 [1], 190–194.

Valdez-Tamez, P.L.; Tushar, D.R.; Rivera-Villareal, R. (2004) Evaluación de la velocidad dehidratación en sistemas puzolanas naturales-portlandita. Revista Ciencia UANL. 8, 190–195.

Amethyst Galleries, Mineral Gallery. Encyclopedia. http://



How to Cite

Maldonado-García, M. A., Hernández-Toledo, U. I., Montes-García, P., & Valdez-Tamez, P. L. (2018). The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars. Materiales De Construcción, 68(329), e148.



Research Articles