Influencia de la ceniza de bagazo de caña sin tratamiento en la microestructura y propiedades mecánicas de morteros
DOI:
https://doi.org/10.3989/mc.2018.13716Palabras clave:
Puzolana, Tratamiento de residuos, Mortero, Productos de hidratación, Resistencia a la compresiónResumen
En esta investigación se evaluó el efecto de la adición de ceniza de bagazo de caña (CBC) en la microestructura de morteros. La CBC fue tamizada durante 5 minutos a través de la malla No. 200 ASTM y evaluada mediante pruebas de análisis químico, difracción láser, absorción física de gases, Microscopia Electrónica de Barrido (MEB) y Difracción de Rayos X (DRX). Se elaboraron mezclas de mortero con 0, 10 y 20% de CBC como sustituto parcial del cemento manteniendo una relación agua/materiales-cementantes de 0.63. Se realizaron pruebas en estado fresco y pruebas de caracterización microestructural a través de MEB y DRX y de resistencia a la compresión a edades de 1, 7, 28, 90 y 600 días. Los resultados muestran que la adición de 10 y 20% de CBC decrementa la trabajabilidad de los morteros, sin embargo, mejora su microestructura e incrementa su resistencia a la compresión a edades tardías.
Descargas
Citas
Worrell, E.; Price, L.; Martín, N.; Hendriks, C.; Ozawa, M.L. (2001) Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 26, 303–329.
Hendriks, C.A.; Worrell, E.; de Jager, D.; Blok, K.; Riemer, P. (2004) Emission reduction of greenhouse gases from the cement industry. Greenhouse gas control technologies Conference paper-cement. www.ieagreen.org.uk
International Energy Agency (IEA). Carbon emissions reduction up to 2050. World Business Council for Sustainable Development. Cement Technology Roadmap 2009. https://www.iea.org/publications/freepublications/publication/Cement.pdf
Cement Industry Federation (CIF). Sustainability Report 2011. www.cement.org.au
Josa, A.; Aguado, A.; Cardim, A.; Byars, E. (2007) Comparative analysis of the cycle impact assessment of available cement inventories in the EU. Cem. Concr. Res. 37 [5], 781–788. https://doi.org/10.1016/j.cemconres.2007.02.004
Ganesan, K.; Rajagopal, K.; Thangavel, K. (2007) Evaluation of bagasse ash supplementary cementitious material. Cem. Concr. Comp. 29 [6], 515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001
Cordeiro, G.C.; Toledo-Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2008) Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Comp. 30 [5], 410–418. https://doi.org/10.1016/j.cemconcomp.2008.01.001
Morales, E.V.; Villar-Coci-a, E.; Frías, M.; Santos, S.F.; Savastano, J.R.H. (2009) Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cem. Concr. Comp. 31 [1], 22–28. https://doi.org/10.1016/j.cemconcomp.2008.10.004
Cordeiro, G.C.; Toledo-Filho, R.D.; Fairbairn, E.M.R. (2009)a Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construct. Build. Mat. 23 [10], 3301–3303. https://doi.org/10.1016/j.conbuildmat.2009.02.013
Cordeiro, G.C.; Toledo-Fhilo, R.D.; Tavares, L.M.; Fairbair, E.M.R. (2009)b Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39 [2], 110–115. https://doi.org/10.1016/j.cemconres.2008.11.005
Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. (2009)a Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Construct. Build. Mat. 23 [12], 3523–3531. https://doi.org/10.1016/j.conbuildmat.2009.06.046
Bahurudeen, A.; Santhanam, M. (2015) Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem. Concr. Comp. 56, 32–45.
Frías, M.; Villar, E.; Svastano, H. (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Comp. 33, 490–496.
Dhengare S.; Amrodiya S.; Shelote M.; Asati A.; Bandwaf N.; Anand K.; Jichkar. (2015) Utilization of sugarcane bagasse ash as a supplementary cementitious material in concrete and mortar – a review. International Journal of Civil Engineering and Technology. 6 [4], 94–106. http://www.iaeme.com/ijciet/index.asp
Valencia, G.; Mejía de Gutierrez, R.; Barrera, J.; Delvasto, S. (2012) Estudio de durabilidad y corrosión en morteros armados adicionados con toba volcánica y ceniza de bagazo de ca-a de azúcar. Revista de la Construcción. 12 [22], 112–122. https://doi.org/10.4067/S0718-915X2012000200010
Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. (2009)b Utilization of bagasse ash as a pozzolanic material in concrete. Construct. Build. Mat. 23 [11], 3352–3358. https://doi.org/10.1016/j.conbuildmat.2009.06.030
Unión Nacional de Ca-eros A. C. de México. (2016). Viewed on July 13th 2016, www.caneros.org.mx
Akram, T.; Memon, S.A.; Obaid, H. (2009) Production of low-cost self-compacting concrete using bagasse ash. Construct. Build. Mat. 23 [2], 703–712. https://doi.org/10.1016/j.conbuildmat.2008.02.012
Villar-Coci-a, E.; Valencia-Morales, E.; Gonzáles-Rodriguez, R,; Hernández-Ruiz, J. (2003) Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic-diffusive model. Cem. Concr. Res. 33 [4], 517–524. https://doi.org/10.1016/S0008-8846(02)00998-5
Frías, M.; Villar-Coci-a, E.; Sanchez de Rojas, M.I.; Valencia-Morales, E. (2005) The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: Application of a diffusive model. Cem. Concr. Res. 35 [11], 2137–2142. https://doi.org/10.1016/j.cemconres.2005.07.005
Bahurudeen, A.; Wani K.; Abdul B.M.; Santhanam, M. (2016) Assessment of pozzolanic performance of sugarcane bagasse ash. J. Mater. Civ. Eng. 28[2], 01–11. https://ascelibrary.org/doi/10.1061/%28ASCE%29MT. 1943-5533.0001361
Seong-Tae Y.; Eun-Ik Y.; Joong-Cheol C. (2006) Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design 236 [2], 115–127.
German, R M. (1994) Powder metallurgy Science. MPIF Princeton. USA, (1994).
Soares, M.M.N.S.; Poggiali, F.S.J.; Bezerra, A.C.S.; Figueiredo, R.B.; Aguilar, M.T.P.; Catlin, P.R. (2014) The effect of calcination conditions on the physical and chemical characteristics of sugar cane bagasse ash. REM: R. Esc. Minas, Ouro Petro. 67(1), 33–39.
Martirena, J.F.; Middendor, F.B; Gehrke, M; Budelmann, H. (1998) Use of wastes of the sugar industry in lime-pozzolana binders: Study of the reaction. Cem. Concr. Res. 28[11], 1525–1536. https://doi.org/10.1016/S0008-8846(98)00130-6
Somna, R.; Jaturapitakkul, C.; Rattanachu, P.; Chalee, W. (2012) Effect of ground bagasse ash on mechanical and durability properties of recycled aggregated concrete. Materials and Design. 36, 597–603. https://doi.org/10.1016/j.matdes.2011.11.065 https://doi.org/10.1016/j.matdes.2011.11.065
Batra, V.S.; Urbonaite, S.; Svensson, G. (2008) Characterization of unburned carbon in bagasse fly ash. Fuel. 87 [13-14], 2972–2976. https://doi.org/10.1016/j.fuel.2008.04.010
Martirena, F.; Middenford, B.; Day, R.L.; Gehrke, M.; Roque, P.; Martinez, L.; Betancourt S. (2006) Rudimentary, low-tech incinerators as a means to produce reactive pozzolan out of sugar cane straw. Cem. Concr. Res. 36 [6], 1056–1061. https://doi.org/10.1016/j.cemconres.2006.03.016
Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2012) Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Construct. Build. Mat. 29, 641–646.
Chandara, C.; Sakai, E.;Azizli, K.A.M.; Ahmad, Z.A.; Hashim, S.F.A. (2010) The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer. Construct. Build. Mat. 24 [9], 1590–1593. https://doi.org/10.1016/j.conbuildmat.2010.02.036
Jímenez-Quero, V.G.; León-Martínez, F.M.; Montes-García, P.; Gaona-Tiburcio, C.; Chacón-Nava, J.G. (2013) Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Construct. Build. Mat. 40, 691–701.
Diamond, S. (2004) The microstructure of cement paste and concrete--a visual primer. Cem. Concr. Comp. 26 [8], 919–933. https://doi.org/10.1016/j.cemconcomp.2004.02.028
Giraldo, M.A.; Tobón, J.I. (2006) Mineralogical evolution of Portland cement during hydration process. Dyna. 73 [148], 69–81. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532006000100007&lng=en&nrm=iso&tlng=es
Torres, J.; Mejía de Gutiérrez, R.; Castelló, R.; Vizcaino, C. (2008) Proceso de hidratación depastas de OPC adicionadas con caolín tratado térmicamente. Revista Facultad de Ingeniería. Universidad de Antioquia. 43, 77–85. http://www.scielo.org.co/pdf/rfiua/n43/n43a07.pdf
Govindarajan, D.; Jayalakshmi, G. (2011) XRD, FIRT and SEM studies on calcined sugarcane bagasse ash blended cement. Archives of Physics Research. 2 [4], 38–44. http://scholarsresearchlibrary.com/APR-vol2-iss4/APR-2011-2-4-38-44.pdf
Hussein, A.A.E.; Shafiq, N.; Nuruddin, M.F.; Memon, F.A. (2014) Compressive strength and microstructure of sugar cane bagasse ash concrete. Research Journal of Applied Sciences, Engineering and Technology. 7 [12], 2569–2577.https://www.researchgate.net/publication/287501413_Compressive_Strength_and_Microstructure_of_Sugar_Cane_Bagasse_Ash_Concrete
Richardson, I.G. (2008) The calcium silicate hydrates. Cem. Concr. Res. 38 [2], 137–158. https://doi.org/10.1016/j.cemconres.2007.11.005
Arizzi, A.; Cultrone, G. (2012) Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: A mineralogical, textural and physical-mechanical study. Construct. Build. Mat. 31, 135–143.
Sisomphon, K.; Franke, L. (2011) Evaluation of calcium hydroxide contents in pozzolanic cement pastes by a chemical extraction method. Construct. Build. Mat. 25 [1], 190–194. https://doi.org/10.1016/j.conbuildmat.2010.06.039
Valdez-Tamez, P.L.; Tushar, D.R.; Rivera-Villareal, R. (2004) Evaluación de la velocidad dehidratación en sistemas puzolanas naturales-portlandita. Revista Ciencia UANL. 8, 190–195. http://eprints.uanl.mx/1606/1/art_puzolanas.pdf.
Amethyst Galleries, Mineral Gallery. Encyclopedia. http:// www.galleries.com/Cristobalite
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.