Physicochemical and radiological characterization of kaolin and its polymerization products




Metakaolin, Amorphous materials, Alkali-silica reaction, Curing, X-ray Diffraction (XRD)


The aim of this study was determination of physical-chemical and radiological characteristics of kaolin and products of alkali-activated thermally treated kaolin (geopolymer). Also, the objective of presented research was to investigate the possibility of kaolin application as a pigment or as a raw material for obtaining geopolymer materials as a relatively new ones in a building material industry. Physicochemical characterization of one set of samples was conducted using X-ray diffraction (XRD), Fourier transform infra - red (FTIR) and X-ray photoelectron spectroscopy (XPS). Activity concentration of naturally occurring radionuclides in kaolin, metakaolin and geopolymer were determined. The absorbed dose rate (D) and the annual effective dose rate (EDR), calculated in accordance with the UNSCEAR 2000 report, are also presented in this paper. Kaolin was heat-treated on 750oC and specific activity of natural radionuclide in metakaolin increased up to 1.6, while measured specific activities in geopolymer were the lowest.


Download data is not yet available.


Kirchner, A.V.; Harmuth, H. (2004) Investigation of Geopolymer Binders with respect to Their Application for Building Materials. Ceram. Silik. 48 [3], 117–120.

Malek, R.I.A.; Roy, D.M. (1996) Reducing the greenhouse effect through new cements. In: Enviromental issues and waste management technologies in the ceramic and nuclear industries symposium Indianapolis, Indianapolis, p.333–343.

Davidovits, J. (1994) in: Proceedings First International Conference on Alkaline Cements and Concretes, Scientific Research Institute on Binders and Materials, Kiev State Technical University, Kiev, Ukraine. PMid:7821155

Palomo, A.; Blanco-Varela, M.T.; Granizo Puertas, M.L.F.; Vazquez, T.; Grutzeck, M.W. (1999) Chemical Stability of Cementitious Materials based on Metakaolin. Cem. Concr. Res. 20 [7], 997–1004.

Odler, I. (2000) Special inorganic cements. E&FN SPON, New York.

Shi, C.; Fernández-Jiménez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41[7], 750–763.

Miranda, J.M.; Jimenez, A.F.; Gonzalez, J.A.; Palomo, A. (2005) Corrosion resistance in activated fly ash mortars. Cem. Concr. Res. 35, 1210–1217.

Davidovits, J. (1994) Global warming impact on the cement and aggregates industries. World Resource Review 6 [2], 263–278.

Saraswathy, V.; Muralidharan. S.; Thangavel, K.; Srinivasan, S. (2003) Influence of activated fly ash on corrosion-resistance and strength of concrete. Cem. Concr. Compos. 25[7], 673–680.

Saraswathy, V.; Karthick, S.P. (2013) A state-of-the-art review on the durability of silica fume-blended concrete-a boon to the construction industry. Corros. Rev 31[3–6], 123–134.

Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Deventer, Van J.S.J. (2007) Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917–2933.

Building Materials in Civil Engineering (2011) A volume in Woodhead Publishing Series in Civil and Structural Engineering, Ed: Haimei Zhang, Published by Woodhead Publishing Limited,Cambridge, UK, pp. 7–28.

O'Brien, R.S.; Cooper, M.B. (1998) Technologically enhanced naturally occurring radioactive material (NORM): pathway analysis and radiological impact. Appl. Radiat. Isot. 49. 227–239.

UNSCEAR (2000) Sources and effects of ionizing radiation—United Nations Scientific Committee on the effects of Atomic Radiation, UNSCEAR 2000 Report to the General Assembly with Scientific Annexes, United Nations, New York.

Merdanoglu, B.; Altinsoy, N. (2006) Radioactivity concentration and dose assessment for soil samples from Kestanbol granite area, Turkey. Radiat. Prot. Dosimetry 121, 399–405. PMid:16698965

Nuccetelli, C.; Risica, S. (2008) Thorium series radionuclides in the environment: measurement, dose assessment and regulation. Appl. Radiat. Isot. 66, 1657–1660. PMid:18511286

Riise, G. (1990) A study of radionuclide association with soil components using a sequential extraction procedure. J. Radioanal. Nucl. Chem. 142, 531–538.

Schmidt, U. (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual. 32, 1939–1954.

Ramli, A.T.; Wahab, M.A.; Hussein, A.; Wood, K. (2005) Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia. J Environ. Radioact. 80, 287–304. PMid:15725504

Tsabaris, C.; Eleftheriou, G.; Kapsimalis, V.; Anagnostou, C.; Vlastou, R.; Durmishi, C.; Kedhi, M.; Kalfas, C.A. (2007) Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Appl. Radiat. Isot. 65 [4], 445–453. PMid:17215129

Frattini, P.; de Vivo, B.; Lima,A.; Cicchella, D. (2006) Elemental and gamma-ray surveys in the volcanic soils of Ischia Island, Italy. Geochem Explor. Environ. A 6 [4], 325–339.

Beretka, J.; Mathew, P.J. (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 48, 87–95. PMid:3967976

World Health Organization. WHO (2009) Handbook on Indoor Radon: A Public Health Perspective.WHO, Geneva, 2009. Available at env/radon/en/.

International Commission on Radiological Protection (2006) Low-dose extrapolation of radiation-related cancer risk. Publication 99. Amsterdam, the Netherlands: Elsevier.

Nenadovi?, S.; Nenadovi?, M.; Kljajevi?, Lj.; Vukanac, I.; Poznanovi?, M.; Radosavljevi?, A.M.; Pavlovi?, V. (2012) Vertical distribution of natural radionuclides in soil: Assessment of external exposure of population in cultivated and undisturbed areas. Sci. Total. Environ. 429, 309–316.

Vukanac, I.; ?ura?evi?, M.; Kandi?, A.; Novkovi?, D.; Na??er?, L.; Milo?evi?, Z. (2008) Experimental Determination of the HPGe spectrometer Efficiency Curve. Appl Radiat. Isotop. 66, 792–795. PMid:18343144

IAEA (1989) Measurement of Radionuclides in Food and the Environment, Technical Report Series No 295, Vienna, Austria.

Debertin K, Schötzing U (1990) Bedeutungvon Summationskorrektionen bei der Gammastrahlen- Spektrometrie mit Germaniumdetektoren. PTB-Bericht PTB-Ra-24, Braunschweig, Germany; Firestone RB8th ed. New York: Wiley-Interscience; Table of Isotopes.

Mulwa, B. M.; Maina, D. M.; Patel, J. P. (2013) Radiological Analysis of Suitability of Kitui South Limestone for use as Building Material. International Journal of Fundamental Physical Sciences. 3 [2], 32–35.

Ajayi, J. O.; Jere, P.; Balogun, B. B. (2013) Assessment of Radiological Hazard Indices of Building Materials in Ogbomoso, South-West Nigeria. Environ. Nat. Resources Research. 3 [2], 128–132.

UE Radiation protection 112 (1999) Radiological Protection Principles concerning the Natural radioactivity of Building Materials.

Davidovits, J. (2008) Geopolymer Chemistry and Applications, 2nd ed. Institut Géopolymère, Saint- Quentin, France. PMCid:PMC2751601

Barrios, J.; Plan~on, A.; Cruz, M.I.; Tehoubar, C.; (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite--Relationship with the infrared spectra. Clays Clay Miner. 25, 422–429.

Rouxhet, R.G.; Samudaeheata, N.; Jacogs, H.; Anton, O. (1977) Attribution of the OH stretching bands of kaolinite. Clay Miner. 12 [2], 171–179.

Nuntiya, A.; Prasanphan, S. (2006) The rheological behavior of kaolin uspensions, Chiang Mai Journal of Science 33, 271–281.

Worasith, N.; Goodman, B.A.; Jeyashoke, N.; Thiravetyan, P. (2011) Decolorization of Rice Bran Oil using Modified kaolin. J. Am. Oil Chem. Soc. 88, 2005–2014.

Ekkose, G.I. (2005) Fourier Transform infrared spectrophotometry and X-ray powder diffractometry as complementary techniques in characterizing clay size fraction of kaolin. J. Appl. Sci. Environ. Manag. 9 [2], 43–48.

Farmer, V.C.; Russell, J.D. (1964) The infrared spectra of layered silicates. Spectrochimica Acta 20, 1149–1173.

Hochela, Jr. M.F.; Brown, Jr. G. (1988) Aspects of silicate surface and bulk structure analysis using X-ray photoelectron spectroscopy. Geochem. Cosmochem. Acta 52, 1641.

Kanuchova, M.; Kozakova, L.; Drabova, M.; Sisol, M.; Estokova, A.; Kanuch, J.; Skvarla, J. (2015) Monitoring and Characterization of Creation of Geopolymers Prepared From Fly Ash and Metakaolin by X-Ray Photoelectron Spectroscopy Method. Environ. Prog. Sustain. Energy 34, 841.

Paparazzo, E. (1996) On the XPS analysis of Si-OH groups at the surface of Silica. Surf. Interf. Anal. 24, 729.<729::AID-SIA183>3.0.CO;2-P

Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R. Jr. (2003) NIST Standard Reference Database 20, Version 3.4 (web version) (http:/

Xu, H.; van Deventer, J.S.J. (2003) Effect of Source Materials on Geopolymerization. Ind. En. Chem. Res. 42, 1698–1706.

Puertas, F.; Alonso, M.M.; Torres-Carrasco, M.; Rivilla, P.; Gasco, C.; Yagüeb, L.; Suárez, J.A.; Navarro, N. (2015) Radiological characterization of anhydrous/hydrated cements and geopolymers. Constr. Build. Mater. 101, 1105– 1112.

Trevisi, R.; Risica, S.; Alessandro, M. D.; Paradiso, D.; Nuccetelli, C.; (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ. Radioact. 105, 11–20. PMid:22230017



How to Cite

Ivanović, M., Kljajević, L., Nenadović, M., Bundaleski, N., Vukanac, I., Todorović, B., & Nenadović, S. (2018). Physicochemical and radiological characterization of kaolin and its polymerization products. Materiales De Construcción, 68(330), e155.



Research Articles