Caracterización físico-química y radiológica de un caolín y sus productos de polimerización

Autores/as

DOI:

https://doi.org/10.3989/mc.2018.00517

Palabras clave:

Metacaolin, Materiales amorfos, Reacción árido-alcali, Curado, Difracción de rayos X (XRD)

Resumen


El objetivo de este estudio fue la determinación de las características físico-químicas y radiológicas del caolín y los productos resultantes de la activación alcalina (geopolímero). Además, el objetivo de la investigación fue investigar la posibilidad de la aplicación de caolín como pigmento o como materia prima para obtener materiales geopoliméricos relativamente nuevos en una industria de materiales de construcción. La caracterización fisicoquímica de las muestras se realizó mediante difracción de rayos X (XRD), espectroscopía infrarroja por transformada de Fourier (FTIR) y espectroscopía fotoelectrónica de rayos X (XPS). Se determinó la concentración de actividad de radionucleidos naturales en caolín, metacaolín y geopolímero. La tasa de dosis absorbida (D) y la tasa de dosis efectiva anual (EDR), calculada de acuerdo con el informe de UNSCEAR 2000, también se presentan en este trabajo. El caolín se trató térmicamente a 750 ° C y la actividad específica del radionucleido natural en el metacaolín aumentó hasta 1.6, mientras que las actividades específicas medidas en el geopolímero fueron las más bajas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Kirchner, A.V.; Harmuth, H. (2004) Investigation of Geopolymer Binders with respect to Their Application for Building Materials. Ceram. Silik. 48 [3], 117–120.

Malek, R.I.A.; Roy, D.M. (1996) Reducing the greenhouse effect through new cements. In: Enviromental issues and waste management technologies in the ceramic and nuclear industries symposium Indianapolis, Indianapolis, p.333–343.

Davidovits, J. (1994) in: Proceedings First International Conference on Alkaline Cements and Concretes, Scientific Research Institute on Binders and Materials, Kiev State Technical University, Kiev, Ukraine. PMid:7821155

Palomo, A.; Blanco-Varela, M.T.; Granizo Puertas, M.L.F.; Vazquez, T.; Grutzeck, M.W. (1999) Chemical Stability of Cementitious Materials based on Metakaolin. Cem. Concr. Res. 20 [7], 997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5

Odler, I. (2000) Special inorganic cements. E&FN SPON, New York.

Shi, C.; Fernández-Jiménez, A.; Palomo, A. (2011) New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 41[7], 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016

Miranda, J.M.; Jimenez, A.F.; Gonzalez, J.A.; Palomo, A. (2005) Corrosion resistance in activated fly ash mortars. Cem. Concr. Res. 35, 1210–1217. https://doi.org/10.1016/j.cemconres.2004.07.030

Davidovits, J. (1994) Global warming impact on the cement and aggregates industries. World Resource Review 6 [2], 263–278.

Saraswathy, V.; Muralidharan. S.; Thangavel, K.; Srinivasan, S. (2003) Influence of activated fly ash on corrosion-resistance and strength of concrete. Cem. Concr. Compos. 25[7], 673–680. https://doi.org/10.1016/S0958-9465(02)00068-9

Saraswathy, V.; Karthick, S.P. (2013) A state-of-the-art review on the durability of silica fume-blended concrete-a boon to the construction industry. Corros. Rev 31[3–6], 123–134. https://doi.org/10.1515/corrrev-2013-0017

Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; Deventer, Van J.S.J. (2007) Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917–2933. https://doi.org/10.1007/s10853-006-0637-z

Building Materials in Civil Engineering (2011) A volume in Woodhead Publishing Series in Civil and Structural Engineering, Ed: Haimei Zhang, Published by Woodhead Publishing Limited,Cambridge, UK, pp. 7–28.

O'Brien, R.S.; Cooper, M.B. (1998) Technologically enhanced naturally occurring radioactive material (NORM): pathway analysis and radiological impact. Appl. Radiat. Isot. 49. 227–239. https://doi.org/10.1016/S0969-8043(97)00244-3

UNSCEAR (2000) Sources and effects of ionizing radiation—United Nations Scientific Committee on the effects of Atomic Radiation, UNSCEAR 2000 Report to the General Assembly with Scientific Annexes, United Nations, New York.

Merdanoglu, B.; Altinsoy, N. (2006) Radioactivity concentration and dose assessment for soil samples from Kestanbol granite area, Turkey. Radiat. Prot. Dosimetry 121, 399–405. https://doi.org/10.1093/rpd/ncl055 PMid:16698965

Nuccetelli, C.; Risica, S. (2008) Thorium series radionuclides in the environment: measurement, dose assessment and regulation. Appl. Radiat. Isot. 66, 1657–1660. https://doi.org/10.1016/j.apradiso.2008.01.024 PMid:18511286

Riise, G. (1990) A study of radionuclide association with soil components using a sequential extraction procedure. J. Radioanal. Nucl. Chem. 142, 531–538. https://doi.org/10.1007/BF02040324

Schmidt, U. (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J. Environ. Qual. 32, 1939–1954. https://doi.org/10.2134/jeq2003.1939

Ramli, A.T.; Wahab, M.A.; Hussein, A.; Wood, K. (2005) Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia. J Environ. Radioact. 80, 287–304. https://doi.org/10.1016/j.jenvrad.2004.06.008 PMid:15725504

Tsabaris, C.; Eleftheriou, G.; Kapsimalis, V.; Anagnostou, C.; Vlastou, R.; Durmishi, C.; Kedhi, M.; Kalfas, C.A. (2007) Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Appl. Radiat. Isot. 65 [4], 445–453. https://doi.org/10.1016/j.apradiso.2006.11.006 PMid:17215129

Frattini, P.; de Vivo, B.; Lima,A.; Cicchella, D. (2006) Elemental and gamma-ray surveys in the volcanic soils of Ischia Island, Italy. Geochem Explor. Environ. A 6 [4], 325–339. https://doi.org/10.1144/1467-7873/06-105

Beretka, J.; Mathew, P.J. (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 48, 87–95. https://doi.org/10.1097/00004032-198501000-00007 PMid:3967976

World Health Organization. WHO (2009) Handbook on Indoor Radon: A Public Health Perspective.WHO, Geneva, 2009. Available at http://www.who.int/ionizing_radiation/ env/radon/en/.

International Commission on Radiological Protection (2006) Low-dose extrapolation of radiation-related cancer risk. Publication 99. Amsterdam, the Netherlands: Elsevier.

Nenadovi?, S.; Nenadovi?, M.; Kljajevi?, Lj.; Vukanac, I.; Poznanovi?, M.; Radosavljevi?, A.M.; Pavlovi?, V. (2012) Vertical distribution of natural radionuclides in soil: Assessment of external exposure of population in cultivated and undisturbed areas. Sci. Total. Environ. 429, 309–316.

Vukanac, I.; ?ura?evi?, M.; Kandi?, A.; Novkovi?, D.; Na??er?, L.; Milo?evi?, Z. (2008) Experimental Determination of the HPGe spectrometer Efficiency Curve. Appl Radiat. Isotop. 66, 792–795. https://doi.org/10.1016/j.apradiso.2008.02.039 PMid:18343144

IAEA (1989) Measurement of Radionuclides in Food and the Environment, Technical Report Series No 295, Vienna, Austria.

Debertin K, Schötzing U (1990) Bedeutungvon Summationskorrektionen bei der Gammastrahlen- Spektrometrie mit Germaniumdetektoren. PTB-Bericht PTB-Ra-24, Braunschweig, Germany; Firestone RB8th ed. New York: Wiley-Interscience; Table of Isotopes.

Mulwa, B. M.; Maina, D. M.; Patel, J. P. (2013) Radiological Analysis of Suitability of Kitui South Limestone for use as Building Material. International Journal of Fundamental Physical Sciences. 3 [2], 32–35.

Ajayi, J. O.; Jere, P.; Balogun, B. B. (2013) Assessment of Radiological Hazard Indices of Building Materials in Ogbomoso, South-West Nigeria. Environ. Nat. Resources Research. 3 [2], 128–132.

UE Radiation protection 112 (1999) Radiological Protection Principles concerning the Natural radioactivity of Building Materials.

Davidovits, J. (2008) Geopolymer Chemistry and Applications, 2nd ed. Institut Géopolymère, Saint- Quentin, France. PMCid:PMC2751601

Barrios, J.; Plan~on, A.; Cruz, M.I.; Tehoubar, C.; (1977) Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite--Relationship with the infrared spectra. Clays Clay Miner. 25, 422–429. https://doi.org/10.1346/CCMN.1977.0250608

Rouxhet, R.G.; Samudaeheata, N.; Jacogs, H.; Anton, O. (1977) Attribution of the OH stretching bands of kaolinite. Clay Miner. 12 [2], 171–179. https://doi.org/10.1180/claymin.1977.012.02.07

Nuntiya, A.; Prasanphan, S. (2006) The rheological behavior of kaolin uspensions, Chiang Mai Journal of Science 33, 271–281.

Worasith, N.; Goodman, B.A.; Jeyashoke, N.; Thiravetyan, P. (2011) Decolorization of Rice Bran Oil using Modified kaolin. J. Am. Oil Chem. Soc. 88, 2005–2014. https://doi.org/10.1007/s11746-011-1872-2

Ekkose, G.I. (2005) Fourier Transform infrared spectrophotometry and X-ray powder diffractometry as complementary techniques in characterizing clay size fraction of kaolin. J. Appl. Sci. Environ. Manag. 9 [2], 43–48.

Farmer, V.C.; Russell, J.D. (1964) The infrared spectra of layered silicates. Spectrochimica Acta 20, 1149–1173. https://doi.org/10.1016/0371-1951(64)80165-X

Hochela, Jr. M.F.; Brown, Jr. G. (1988) Aspects of silicate surface and bulk structure analysis using X-ray photoelectron spectroscopy. Geochem. Cosmochem. Acta 52, 1641. https://doi.org/10.1016/0016-7037(88)90232-3

Kanuchova, M.; Kozakova, L.; Drabova, M.; Sisol, M.; Estokova, A.; Kanuch, J.; Skvarla, J. (2015) Monitoring and Characterization of Creation of Geopolymers Prepared From Fly Ash and Metakaolin by X-Ray Photoelectron Spectroscopy Method. Environ. Prog. Sustain. Energy 34, 841. https://doi.org/10.1002/ep.12068

Paparazzo, E. (1996) On the XPS analysis of Si-OH groups at the surface of Silica. Surf. Interf. Anal. 24, 729. https://doi.org/10.1002/(SICI)1096-9918(19960930)24:10<729::AID-SIA183>3.0.CO;2-P

Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R. Jr. (2003) NIST Standard Reference Database 20, Version 3.4 (web version) (http:/ srdata.nist.gov/xps/).

Xu, H.; van Deventer, J.S.J. (2003) Effect of Source Materials on Geopolymerization. Ind. En. Chem. Res. 42, 1698–1706. https://doi.org/10.1021/ie0206958

Puertas, F.; Alonso, M.M.; Torres-Carrasco, M.; Rivilla, P.; Gasco, C.; Yagüeb, L.; Suárez, J.A.; Navarro, N. (2015) Radiological characterization of anhydrous/hydrated cements and geopolymers. Constr. Build. Mater. 101, 1105– 1112. https://doi.org/10.1016/j.conbuildmat.2015.10.074

Trevisi, R.; Risica, S.; Alessandro, M. D.; Paradiso, D.; Nuccetelli, C.; (2012) Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. J Environ. Radioact. 105, 11–20. https://doi.org/10.1016/j.jenvrad.2011.10.001 PMid:22230017

Publicado

2018-06-30

Cómo citar

Ivanović, M., Kljajević, L., Nenadović, M., Bundaleski, N., Vukanac, I., Todorović, B., & Nenadović, S. (2018). Caracterización físico-química y radiológica de un caolín y sus productos de polimerización. Materiales De Construcción, 68(330), e155. https://doi.org/10.3989/mc.2018.00517

Número

Sección

Artículos