Effect of hybrid fibers, calcium carbonate whisker and coarse sand on mechanical properties of cement-based composites
DOI:
https://doi.org/10.3989/mc.2018.01717Keywords:
Composite, Microcracking, Calcium carbonate, Compressive strength, Flexural strengthAbstract
Nowadays researchers are developing a new hybrid fiber reinforced cement-based composites (HyFRCC). The new HyFRCC can restrain micro-cracking, improves compressive and flexural performance of beams by addition of calcium carbonate (CaCO3) whisker, polyvinyl alcohol (PVA) fiber and steel fiber. In this work, a mix optimization procedure is shown for multi-scale HyFRCC, with steel, PVA fiber and CaCO3 whisker. The new HyFRCC is explored with addition of coarse sand to further improve its mechanical properties. Additionally, the flexural performance of beam and slabs has been investigated to optimize sand gradation and fiber combination in new HyFRCC. The compressive strength, flexural strength, flexural behavior, flexural toughness, equivalent flexural strength and deflection-hardening behavior of beams and slabs are improved with optimized content of sand gradation, fibers and CaCO3 whisker. The HyFRCC slab with 1.5% steel fiber, 0.4% PVA fiber, 1% CaCO3 whisker and optimized coarse sand showed overall best properties.
Downloads
References
Banthia, N.; Soleimani, S.M. (2005) Flexural response of hybrid fiber-reinforced cementitious composites. ACI Mater. J. 102[6], 382–389.
Nguyen, V. P.; Stroeven, M.; Sluys, L. J. (2012) Multiscale failure modeling of concrete: micromechanical modeling, discontinuous homogenization and parallel computations. Comp. Meth. Appl. Mech. Eng.201, 139–156. https://doi.org/10.1016/j.cma.2011.09.014
Bentz, D. P. (2000) Influence of silica fume on diffusivity in cement-based materials: II. Multi-scale modeling of concrete diffusivity. Cem. Concr. Res. 30[7], 1121–1129. https://doi.org/10.1016/S0008-8846(00)00263-5
Kang, S. T.; Choi, J. I.; Koh, K. T.; Lee, K. S.; Lee, B. Y. (2016) Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete. Comp. Struct. 145, 37–42. https://doi.org/10.1016/j.compstruct.2016.02.075
Cao, M.; Zhang, C.; Li, Y.; Wei, J. (2014) Using Calcium Carbonate Whisker in Hybrid Fiber-Reinforced Cementitious Composites. ASCE J. Mater. Civ. Eng. 27[4], 04014139. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001041
Kwon, S.; Nishiwaki, T.; Kikuta, T.; Mihashi, H. (2014) Development of Ultra-High-Performance Hybrid Fiber-Reinforced Cement-Based Composites. ACI Mater. J. 111[3]. https://doi.org/10.14359/51686890
Ali, M. (2016). Use of coconut fibre reinforced concrete and coconut-fibre ropes for seismic-resistant construction. Mater. Construcc. 66 [321], e073. https://doi.org/10.3989/mc.2016.01015
Khan, M.; Ali, M. (2016). Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Constr. Build. Mater. 125, 800–808. https://doi.org/10.1016/j.conbuildmat.2016.08.111
Ahmed, S. F. U.; Mihashi, H. (2011) Strain hardening behavior of lightweight hybrid polyvinyl alcohol (PVA) fiber reinforced cement composites. Mater. struct. 44[6], 1179–1191. https://doi.org/10.1617/s11527-010-9691-8
Kim, D. J.; Park, S. H.; Ryu, G. S.; Koh, K. T. (2011) Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Constr. Build. Mater. 25[11], 4144–4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051
Parant, E.; Rossi, P.; Boulay, C. (2007) Fatigue behavior of a multi-scale cement composite. Cem. Concr. Res. 37[2], 264–269. https://doi.org/10.1016/j.cemconres.2006.04.006
Yoo, D. Y.; Banthia, N. (2016) Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Concr. Comp. 73, 267–280. https://doi.org/10.1016/j.cemconcomp.2016.08.001
Soe, K. T.; Zhang, Y. X.; Zhang, L. C. (2013) Material properties of a new hybrid fibre-reinforced engineered cementitious composite. Constr. Build. Mater. 43, 399–407. https://doi.org/10.1016/j.conbuildmat.2013.02.021
Blunt, J. D.; Ostertag, C. P. (2009) Deflection hardening and workability of hybrid fiber composites. ACI Mater. J. 106[3], 265–272.
Cao, M.; Zhang, C.; Lv, H. (2014) Mechanical response and shrinkage performance of cementitious composites with a new fiber hybridization. Constr. Build. Mater. 57, 45–52. https://doi.org/10.1016/j.conbuildmat.2014.01.088
Banyhussan, Q. S.; Yıldırım, G.; Bayraktar, E.; Demirhan, S.; S¸ahmaran, M. (2016) Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr. Build. Mater. 125, 41–52. https://doi.org/10.1016/j.conbuildmat.2016.08.020
Sahmaran, M.; Lachemi, M.; Hossain, K. M.; Ranade, R.; Li, V. C. (2009) Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Mater. J. 106[3], 308–316.
Lawler, J. S.; Zampini, D.; Shah, S. P. (2005) Microfiber and macrofiber hybrid fiber-reinforced concrete. ASCE J. Mater. Civ. Eng. 17[5], 595–604. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(595)
S¸anal, I˙.; Özyurt, N.; Hosseini, A. (2016) Characterization of hardened state behavior of self compacting fiber-reinforced cementitious composites (SC-FRCC's) with different beam sizes and fiber types. Comp. Part B: Eng. 105, 30–45. https://doi.org/10.1016/j.compositesb.2016.06.075
Wille, K.; Parra-Montesinos, G. J. (2012) Effect of Beam Size, Casting Method, and Support Conditions on Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete. ACI Mater. J. 109[3], 379–388.
Yoo, D. Y.; Banthia, N.; Kang, S. T.; Yoon, Y. S. (2016) Size effect in ultra-high-performance concrete beams. Eng. Fract. Mech. 157, 86–106. https://doi.org/10.1016/j.engfracmech.2016.02.009
Nguyen, D. L.; Kim, D. J.; Ryu, G. S.; Koh, K. T. (2013) Size effect on flexural behavior of ultra-high-performance hybrid fiber-reinforced concrete. Comp. Part B: Eng. 45[1], 1104–1116. https://doi.org/10.1016/j.compositesb.2012.07.012
Lepech, M. D.; Li, V. C. (2009) Application of ECC for bridge deck link slabs. Mater. struct. 42[9], 1185. https://doi.org/10.1617/s11527-009-9544-5
Kunieda, M.; Rokugo, K. (2006) Recent progress on HPFRCC in Japan. J. Adv. Concr. Technol. 4[1], 19–33. https://doi.org/10.3151/jact.4.19
Maalej, M.; Quek, S. T.; Ahmed, S. F. U.; Zhang, J.; Lin, V. W. J.; Leong, K. S. (2012) Review of potential structural applications of hybrid fiber Engineered Cementitious Composites. Constr. Build. Mater. 36, 216–227. https://doi.org/10.1016/j.conbuildmat.2012.04.010
Banthia, N.; Majdzadeh, F.; Wu, J.; Bindiganavile, V. (2014) Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cem. Concr. Comp. 48, 91–97. https://doi.org/10.1016/j.cemconcomp.2013.10.018
S¸ahmaran, M. S.; Yücel, H. E.; Demirhan, S.; C Li, V. (2012) Combined Effect of Aggregate and Mineral Admixtures on Tensile Ductility of Engineered Cementitious Composites. ACI Mater. J. 109[6], 627–637.
Cao, M.; Zhang, C.; Wei, J. (2013) Microscopic reinforcement for cement based composite materials. Constr. Build. Mater. 40, 14–25. https://doi.org/10.1016/j.conbuildmat.2012.10.012
Shaikh, F. U. A. (2013) Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Design 50, 674–682. https://doi.org/10.1016/j.matdes.2013.03.063
Li, V. C. (2012) Tailoring ECC for special attributes: A review. Int. J. Concr. Struct. Mater. 6[3], 135–144. https://doi.org/10.1007/s40069-012-0018-8
Yao, W.; Li, J.; Wu, K. (2003) Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem. Concr. Res. 33[1], 27–30. https://doi.org/10.1016/S0008-8846(02)00913-4
Khan, M. I.; Fares, G.; Mourad, S.; Abbass, W. (2016) Optimized Fresh and Hardened Properties of Strain-Hardening Cementitious Composites: Effect of Sand Size and Workability. ASCE J. Mater. Civ. Eng. 28[12], 04016152. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001665
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the printed and online versions of this Journal are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.All contents of this electronic edition, except where otherwise noted, are distributed under a “Creative Commons Attribution 4.0 International” (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the CC BY 4.0 License must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the published by the Editor, is not allowed.