Effect of different PVA and steel fiber length and content on mechanical properties of CaCO3 whisker reinforced cementitious composites





Composite, Calcium carbonate, Fiber reinforcement, Mechanical properties, Microcracking


In this paper, calcium carbonate (CaCO3) whisker as a fiber reinforcement is mixed with steel and PVA fiber to form a multiscale hybrid fiber reinforced cementitious composites (MHFRCC). ASTM standard and post-crack strength techniques are performed to evaluate the mechanical properties of MHFRCC. The 1.25 % long steel fiber, 0.55 % short PVA fiber and 2.0 % CaCO3 whisker specimens showed the best flexural behavior before L/600 deflection. However, 1.5 % long steel fiber, 0.4 % long PVA fiber and 1.0 % CaCO3 whisker specimens presented better crack resistance after L/600 deflection. It is revealed that flexural parameters increase as comprehensive reinforcing index increase. The result showed that the CaCO3 whisker and short PVA fiber provided crack resistance effect at micro-scale and mainly play a dominate role in inhibiting micro-cracking. However, long steel fiber and long PVA fiber showed a better bridging effect of macro cracks at a large deflection.


Download data is not yet available.


Banthia, N.; Trottier, J. F. (1995) Test methods for flexural toughness characterization of fiber reinforced concrete: some concerns and a proposition. ACI Mater. J.92, 48-48. https://doi.org/10.14359/1176

Biolzi, L.; Cattaneo, S.; Guerrini, G. L. (2000) Fracture of plain and fiber-reinforced high strength mortar slabs with EA and ESPI monitoring. Appl. Compos. Mater. 7[1], 1-12. https://doi.org/10.1023/A:1008948125654

Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R. N. (2010) Experimental evaluation of fiber reinforced concrete fracture properties. Compos. Part B-Eng, 41[1], 17-24. https://doi.org/10.1016/j.compositesb.2009.09.002

Kizilkanat, A. B. (2016) Experimental Evaluation of Mechanical Properties and Fracture Behavior of Carbon Fiber Reinforced High Strength Concrete. Period. Polytech-Civ. 60(2), 289. https://doi.org/10.3311/PPci.8509

Maekawa, K.; Ishida, T.; Kishi, T. (2003) Multi-scale modeling of concrete performance. J. Adv. Concr. Technol. 1(2), 91-126. https://doi.org/10.3151/jact.1.91

Pereira, E. B.; Fischer, G.; Barros, J. A. (2012) Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites. Cem. Concr. Comp. 34[10], 1114-1123. https://doi.org/10.1016/j.cemconcomp.2012.08.004

Banthia, N.; Soleimani, S. M. (2005) Flexural response of hybrid fiber-reinforced cementitious composites. ACI Mater. J. 102(6), 382-389. https://doi.org/10.14359/14800

Qian, C. X.; Stroeven, P. (2000) Development of hybrid polypropylene-steel fibre-reinforced concrete. Cem.Concr. Res. 30[1], 63-69. https://doi.org/10.1016/S0008-8846(99)00202-1

Ding, Y.; Zhang, Y.; Thomas, A. (2009) The investigation on strength and flexural toughness of fibre cocktail reinforced self-compacting high performance concrete. Constr. Build. Mater. 23[1], 448-452. https://doi.org/10.1016/j.conbuildmat.2007.11.006

Dawood, E. T.; Ramli, M. (2012) Mechanical properties of high strength flowing concrete with hybrid fibers. Constr. Build. Mater. 28[1], 193-200. https://doi.org/10.1016/j.conbuildmat.2011.08.057

Kim, D. J.; Park, S. H.; Ryu, G. S.; Koh, K. T. (2011) Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Constr. Build. Mater. 25[11], 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051

Cao, M.; Zhang, C.; Wei, J. (2013) Microscopic reinforcement for cement based composite materials. Constr. Build. Mater. 40, 14-25. https://doi.org/10.1016/j.conbuildmat.2012.10.012

Cao, M.; Zhang, C.; Lv, H.; Xu, L. (2014) Characterization of mechanical behavior and mechanism of calcium carbonate whisker-reinforced cement mortar. Constr. Build. Mater. 66, 89-97. https://doi.org/10.1016/j.conbuildmat.2014.05.059

Zhang, C.; Cao, M. (2014) Fiber synergy in multi-scale fiberreinforced cementitious composites. Journal of Reinforced Plastics and Composites, 33[9], 862-874. https://doi.org/10.1177/0731684413514785

Cao, M.; Zhang, C.; Lv, H. (2014) Mechanical response and shrinkage performance of cementitious composites with a new fiber hybridization. Constr. Build. Mater. 57, 45-52. https://doi.org/10.1016/j.conbuildmat.2014.01.088

Cao, M.; Zhang, C.; Li, Y.; Wei, J. (2014) Using calcium carbonate whisker in hybrid fiber-reinforced cementitious composites. ASCE J. Mater. Civ. Eng. 27[4], 04014139. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001041

Cao, M.; Li, L.; Khan, M. (2018) Effect of hybrid fibers, calcium carbonate whisker and coarse sand on mechanical properties of cement-based composites. Mater. Construcc. 68[330], e156. https://doi.org/10.3989/mc.2018.01717

Cao, M.; Xie, C.; Li, L.; Khan, M. (2018) The relationship between reinforcing index and flexural parameters of new hybrid fiber reinforced slab. Comput. Concrete. 22[5], 481-492.

joo Kim, D.; Naaman, A. E.; El-Tawil, S. (2008) Comparative flexural behavior of four fiber reinforced cementitious composites. Cem.Concr. Comp.30[10], 917-928. https://doi.org/10.1016/j.cemconcomp.2008.08.002

ASTM C 1018 (1997) Standard test method for flexural toughness and first crack strength of fiber reinforced concrete (using beam with third-point loading), American Society for Testing and Materials; West Conshohocken, PA.

ASTM C1609/1609M (2012) Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading), American Society for Testing and Materials; West Conshohocken, PA.

Said, S. H.; Razak, H. A.; Othman, I. (2015) Flexural behavior of engineered cementitious composite (ECC) slabs with polyvinyl alcohol fibers. Constr. Build. Mater.75, 176-188. https://doi.org/10.1016/j.conbuildmat.2014.10.036

Said, S. H.; Razak, H. A. (2015) The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC). Mater. Design. 86, 447-457. https://doi.org/10.1016/j.matdes.2015.07.125

Almusallam, T.; Ibrahim, S. M.; Al-Salloum, Y.; Abadel, A.; Abbas, H. (2016) Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cem. Concr. Comp. 74, 201-217. https://doi.org/10.1016/j.cemconcomp.2016.10.002

Ibrahim, S. M.; Almusallam, T. H.; Alsalloum, Y. A.; Abadel, A. A.; Abbas, H. (2016) Strain rate dependent behavior and modeling for compression response of hybrid fiber reinforced concrete. Latin American Journal of Solids & Structures, 13(9). https://doi.org/10.1590/1679-78252717

Ezeldin, A. S.; Balaguru, P. N. (1992) Normal and highstrength fiber-reinforced concrete under compression. ASCE J. Mater. Civ. Eng. 4[4], 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)

Abadel, A. A. (2015) Mechanical properties of hybrid fibrereinforced concrete - analytical modelling and experimental behaviour. Mag. Concr. Res. 68[16], 823-843. https://doi.org/10.1680/jmacr.15.00276

CECS38 (2004) Technical specification for fiber reinforced concrete structures, China Association for engineering construction standardization, China Architecture & Building Press; Beijing, China.

Cao, M.; Li, L. (2018) New models for predicting workability and toughness of hybrid fiber reinforced cement-based composites. Constr. Build. Mater.176, 618-628. https://doi.org/10.1016/j.conbuildmat.2018.05.075

CECS13 (2009) Standard test method for fiber reinforced concrete, China Association for engineering construction standardization,China Architecture & Building Press; Beijing, China.

GB/T 50081 (2002) Standard for test method of mechanical properties on ordinary concrete, Ministry of Construction, China Architecture & Building Press; Beijing, China.



How to Cite

Cao, M., Xie, C., Li, L., & Khan, M. (2019). Effect of different PVA and steel fiber length and content on mechanical properties of CaCO3 whisker reinforced cementitious composites. Materiales De Construcción, 69(336), e200. https://doi.org/10.3989/mc.2019.12918



Research Articles