Incorporating graphene oxide into lime solution: A study of flocculation and corresponding improvement




Portland cement, Reaction, Lime, Dispersion, Superplasticizers


The dispersion behavior of graphene oxide in cement matrix is one important factor in enhancing cement performance. In this work, we investigated the dispersion of graphene oxide in cement by simulating alkaline environment with a solution of calcium hydroxide and studied the corresponding strategy of improving dispersion. The obtained results showed that graphene oxide would flocculate even if calcium hydroxide concentration was very low, which might be the main reason of the unstable properties of the graphene oxide-doped cement. In addition, we discovered that, compared to -OH group, the -COOH group and the long chain of polycarboxylate-based superplasticizer were more effective in delaying the flocculation of graphene oxide. Finally, we proposed a dispersion mechanism of polycarboxylate-based superplasticizer. The study provides inspiration for the design of graphene oxide-doped cement materials.


Download data is not yet available.


Gong K.; Pan Z.; Korayem A.H.; Qiu L.; Li D.; Collins F.; Wang C.M.; Duan W.H. (2015) Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 27, A4014010.

Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. (2015) Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Comp. 58, 140–147.

Mohammed, A.; Sanjayan, J.G.; Duan, W.H.; Nazari, A. (2015) Incorporating graphene oxide in cement composites: a study of transport properties. Constr. Build. Mater. 84(1), 341–347.

Rhee, I.; Lee, J.S.; Kim, Y.A.; Jin, H.K.; Ji, H.K. (2016) Electrically conductive cement mortar: incorporating rice husk-derived high-surface-area graphene. Constr. Build. Mater. 125, 632–642.

Li, X.; Korayem, A.H.; Li, C.; Liu, Y.; He, H.; Sanjayan, J.G.; Duan, W.H. (2016) Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Constr. Build. Mater. 123, 327–335.

Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127.

Wang, B.; Jiang, R.; Wu, Z. (2016) Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite. Nanomaterials. 6, 200. PMid:28335328 PMCid:PMC5245736

Metaxa, Z.S. (2015) Polycarboxylate based superplasticizers as dispersant agents for exfoliated graphene nanoplatelets reinforcing cement based materials. J. Eng. Sci. and Techno. Rev. 8(5), 1–5.

Sharma, S.; Kothiyal, N.C. (2015) Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Constr. Build. Mater. 115, 256–268.

Hummers, W.S.; Offeman, R.E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339.

Lu, Z.; Hou, D.; Meng, L.; Sun, G.; Lu C.; Li, Z. (2015) Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechani cal properties. RSC Adv. 5, 100598–100605.

Chen, W.; Yan, L. (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere. Nanoscale. 2(4), 559–563. PMid:20644759

Kothiyal, N. C.; Sharma, S.; Mahajan, S.; Sethi, S. (2016) Characterization of reactive graphene oxide synthesized from ball – milled graphite: its enhanced reinforcing effects on cement nanocomposites. J. Adhes. Sci. Technol. 30(9), 915–933.

Lu, L.; Ouyang, D. (2017) Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets. Nanomaterials. 7(7), 187. PMid:28726750 PMCid:PMC5535253

Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen ST. (2015) Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20(21), 6592–6594.

Yang, H.; Monasterio, M.; Cui, H.; Han, N. (2017) Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Composites Part A.

Lu, Z.; Hanif, A.; Ning, C.; Shao, H.; Yin, R.; Li, Z. (2017) Steric stabilization of graphene oxide in alkaline cementitious solutions: mechanical enhancement of cement composite. Mater. Des. 127, 154–161.

Li, X.; Lu, Z.; Chuah, S.; Li, W.; Liu, Y.; Duan, W. H.; Li Z. (2017) Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste. Composites Part A. 100, 1–8.

Wang, M.; Wang, R.; Yao, H.; Wang, Z.; Zheng, S. (2016) Adsorption characteristics of graphene oxide nanosheets on cement. RSC Adv. 6(68).

Zhao, L.; Guo, X.; Ge, C.; Li, Q.; Guo, L.; Shu, X.; Liu, J. (2016) Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Constr. Build. Mater. 113, 470–478.

Zhou, C.; Li, F.; Hu, J.; Ren, M.; Wei, J.; Yu, Q. (2017) Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mater. 134, 336–345.

Luo, Z.; Lu, Y.; Somers, L. A.; Johnson, A. T. (2009) High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131(3), 898. PMid:19128004

Everett; Hugh, D. (1988) Basic Principles of Colloid Science, Royal Society of Chemistry, London, (1988).

Park, S.; Lee, K.S.; Bozoklu, G.; Cai, W.; Nguyen, S.T.; Ruoff, R.S. (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano. 2(3), 572–578. PMid:19206584

Wang, M.; Wang, R.; Yao, H.; Farhan, S.; Zheng. S.; Du C. (2016) Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Constr. Build. Mater. 126, 730–739.



How to Cite

Jing, G. J., Ye, Z. M., Lu, X. L., Wu, J. M., Wang, S. X., & Cheng, X. (2018). Incorporating graphene oxide into lime solution: A study of flocculation and corresponding improvement. Materiales De Construcción, 68(331), e165.



Research Articles